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HAFS-HYCOM NUOPC Architecture
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Available
https://github.com/hafs-community/HAFS/tree/feature/hafs_couplehycom

https://github.com/hafs-community/HAFS/tree/feature/hafs_couplehycom


HAFS-HYCOM NUOPC Architecture
Development is ready for pre-release v0.1.0

● Directly connects FV3-HYCOM through NUOPC connectors
● Each model internally merges data for non-overlapped areas
● Physics scheme tuning (in progress)
● Documentation (in progress)

https://github.com/hafs-community/HAFS/wiki/HAFS-Coupled-HYCOM-Report-v0_1_0

Computational cost

● 169 xjet nodes (FV3: 160 compute nodes + 4 IO nodes; HYCOM: 5 nodes)
● ~305 min
● Output tuning (in progress)
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https://github.com/hafs-community/HAFS/wiki/HAFS-Coupled-HYCOM-Report-v0_1_0


HAFS-HYCOM NUOPC Architecture with CMEPS
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HAFS-HYCOM NUOPC Architecture with CMEPS
Development is in progress

● CMEPS revision UFS compatibility
● Build passes
● Regression testing: Disabled CMEPS (in progress)

○ System configuration changes are needed for CMEPS build version

● Regression testing: CMEPS pass-through (in progress)
○ Replicate results of the directly coupled system
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Sensitivity Experiments
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HAFS-HYCOM Model Settings

● The atmospheric FV3atm model component
○ 2880x2400 (~85x72 deg) L91
○ 90s dt_atmos with k_split of 4 and n_split of 5
○ GFS NEMSIO file for IC; 3-hrly GFS grib2 files for LBC 
○ Use the HAFS_V0_gfdlmp_nocpnsst CCPP physics suite 

■ GFDL microphysics; GFS EDMF PBL with HWRF 
modification; No convection; Noah LSM; RRTMG 
radiation; GFS surface layer with HWRF sea surface 
exchange coefficients; with orographic GWD but no 
convective GWD; Turning off the NSST component

● The HYCOM ocean model component
○ Same NATL ocean domain as in HWRF & HMON: 1-45.78N, 

261.8-352.5E at 1/12-degree and 41-layer resolution
○ Ocean IC from RTOFS without spinup
○ Use persistent ocean LBC
○ Atmospheric forcing from 0.25 degree GFS grib2 files
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Blue: FV3atm domain
Red: HYCOM domain



1. Track and Intensity Forecasts
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1. Vmax and Pmin at 
T=0 are already 
under-estimated.  
Vortex initialization 
and/or data 
assimilation needed.

2. Ocean coupling 
impact became 
significant from day 2.

3. The HCPL intensity is 
under-estimated by an 
average of 30 kt/21 
hPa at later lead time, 
compared to the 
HSBS.



Synoptic-Scale Comparison
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HSBS HCPL

850 hPa wind 
and streamline

700-500 hPa 
humidity and

700 hPa height 
and wind



Comparisons of ocean variables 
between HSBS and HCPL

TC-scale analysis (radius <= 500 km):
1. Turbulence Heat Flux = 

Sensible and Latent heat flux
2. Ocean Heat Content
3. Oceanic Upper Layer 

Conditions
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SST (left) and SST cooling (right)

HCPL

HSBS



1. Large turbulence heat flux exchange exists at 
126 lead hour at a maximum of ~1025 W/m2 
(HCPL) and ~1600 W/m2 (HSBS): Ocean 
coupling under-estimates the flux by ~375 W/m2.

2. Maximum heat flux for HCPL is underestimated, 
compared to the HSBS, especially from 80-h 
lead time, with an average of  260 W/m2. This is 
in part contributed by dynamic air-sea dynamic 
interaction during a slow storm-moving period.

⇒ suggesting less heat flux feeds to a TC. 

2. Storm Turbulence Heat Flux



Mixed layer depth (MLD) and Ocean heat content (OHC)
at 126 hr

HCPL: deepening  
MLD by ~70 m, 
compared to HSBS.

HCPL HSBS

HCPL HSBS

MLD

OHC HCPL: increase in OHC, 
with difference of 140 
kJ/cm2.
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Mixed layer depth (MLD) and Ocean heat content (OHC)

Time series of MLD (top) and 
OHC differences from HCPL

A set of minimum, maximum and 
average are estimated an area of 
500 km radius from a TC center at 
the 6 hour intervals.

HCPL predicts deepening MLD and 
increasing OHC, implying changes in 
the oceanic upper layer in response 
to a storm.  

∆ notes the changes from t=0.

MLD

OHC



Summary

1. Initial TC intensity is already ~70 kt/15 hPa weaker than the Best Track, implying the needs of vortex 
initialization, warm start, and/or data assimilation, to close the gap.

2. Without adjustment of atmospheric parameters, ocean coupling simulations result in 
under-predicting intensity by 30 kt/13 hPa.

3. The ocean coupling impact appears in intensity forecasts from lead time day 2.

4. The largest turbulence heat flux difference is ~375 W/m2 (at 126 h), where HSBS estimates ~1600 
W/m2 from persistent SST, and HCPL predicts less due to the dynamical interactions between 
3D-ocean and a storm.

5.  Despite of ~50 kJ/cm2 OHC more available, HCPL provides less heat flux.   
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Summary: Continued

6. The storm local impact is observed at least in the upper 300-m depth, where Z20 deepens from 240 
to 290 m.

7. A storm changes mixed-layer depth change by O(70 m) (for Vmax=115kt). 

8. Storm-induced SST cooling is at an order of 2oC and cold wake is estimated at ~4oC.

9. HCPL exhibits altering the upper condition through the interactions between the ocean steering 
currents and topography, resulting in an anticyclonic circulation that leads to deepening MLD (by 
100 m), warming T (by 3.7oC @70 m) , and downwelling (by 171 m/day @70 m).

Conclusions:

Coupling 3D ocean modeling alters the oceanic upper layer, by deepening mixed layer depth and cooling 
water temperature directly and indirectly.

It enhance interactions of ocean currents and topography.  
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Ongoing and Future HAFS-HYCOM Coupling Developments

● Conduct small-scale HAFS-HYCOM coupling retrospective tests based on the 
HAFS.V0.1A baseline configuration

● Enable using the atmospheric surface pressure in HYCOM coupling
● Slightly increase HYCOM ocean domain and get the HAFS-HYCOM coupling 

ready for the HAFS.V0.1A real-time experiment (08/01/2020)
● Use the CMEPS mediator for coupling
● Establish the three-way atmosphere-wave-ocean coupled 

HAFS-WW3-HYCOM system

18



Thanks!
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