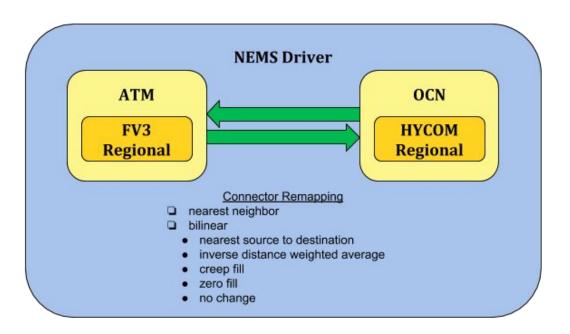


HAFS-HYCOM Coupling Progress Update

July 22, 2020

Daniel Rosen, Bin Liu, Hyun-Sook Kim



Outline

- Development Updates
- Sensitivity Experiments

Development Update

HAFS-HYCOM NUOPC Architecture

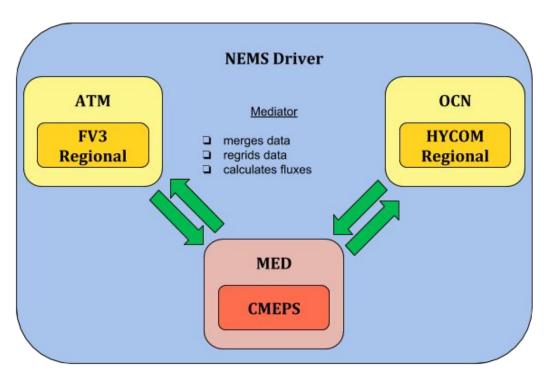
Shapes		
	Component	
$\qquad \qquad \Longrightarrow \qquad \qquad$	Connector	

Color Code				
	Blue	Driver		
	Yellow	Model		
	Green	Connector		
	Orange	Mediator		
	Gray	Off		

Available

https://github.com/hafs-community/HAFS/tree/feature/hafs_couplehycom

HAFS-HYCOM NUOPC Architecture


Development is ready for pre-release v0.1.0

- Directly connects FV3-HYCOM through NUOPC connectors
- Each model internally merges data for non-overlapped areas
- Physics scheme tuning (in progress)
- Documentation (in progress)
 https://github.com/hafs-community/HAFS/wiki/HAFS-Coupled-HYCOM-Report-v0 1 0

Computational cost

- 169 xjet nodes (FV3: 160 compute nodes + 4 IO nodes; HYCOM: 5 nodes)
- ~305 min
- Output tuning (in progress)

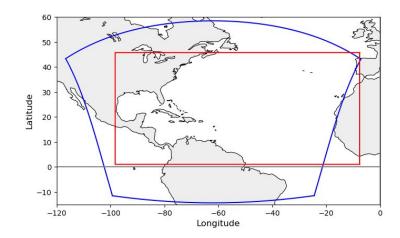
HAFS-HYCOM NUOPC Architecture with CMEPS

Shapes		
	Component	
$\qquad \qquad \Longrightarrow$	Connector	

Color Code				
	Blue	Driver		
	Yellow	Model		
	Green	Connector		
	Orange	Mediator		
	Gray	Off		

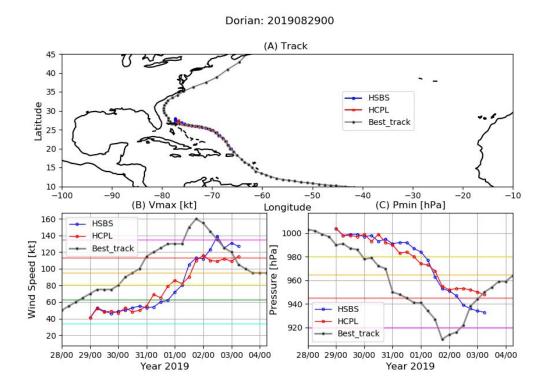
In Progress

HAFS-HYCOM NUOPC Architecture with CMEPS

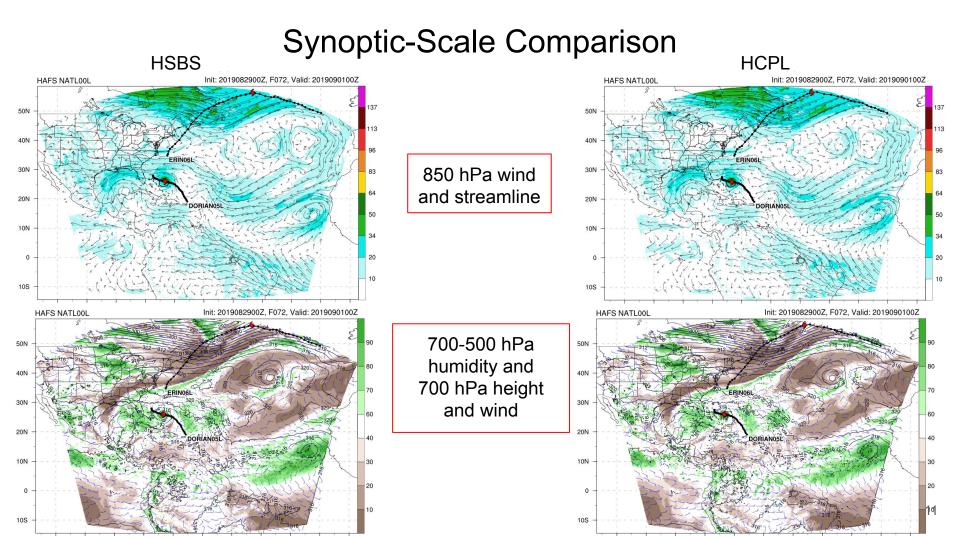

Development is in progress

- CMEPS revision UFS compatibility
- Build passes
- Regression testing: Disabled CMEPS (in progress)
 - System configuration changes are needed for CMEPS build version
- Regression testing: CMEPS pass-through (in progress)
 - Replicate results of the directly coupled system

Sensitivity Experiments


HAFS-HYCOM Model Settings

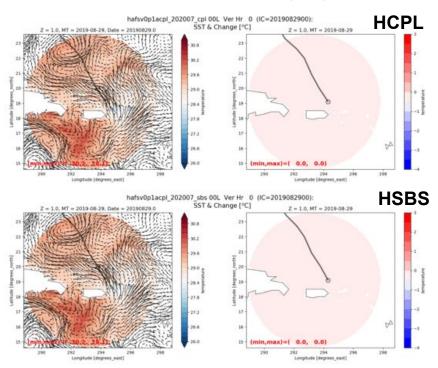
- The atmospheric FV3atm model component
 - 2880x2400 (~85x72 deg) L91
 - 90s dt_atmos with k_split of 4 and n_split of 5
 - GFS NEMSIO file for IC; 3-hrly GFS grib2 files for LBC
 - Use the HAFS_V0_gfdImp_nocpnsst CCPP physics suite
 - GFDL microphysics; GFS EDMF PBL with HWRF modification; No convection; Noah LSM; RRTMG radiation; GFS surface layer with HWRF sea surface exchange coefficients; with orographic GWD but no convective GWD; Turning off the NSST component
- The HYCOM ocean model component
 - Same NATL ocean domain as in HWRF & HMON: 1-45.78N,
 261.8-352.5E at 1/12-degree and 41-layer resolution
 - Ocean IC from RTOFS without spinup
 - Use persistent ocean LBC
 - Atmospheric forcing from 0.25 degree GFS grib2 files



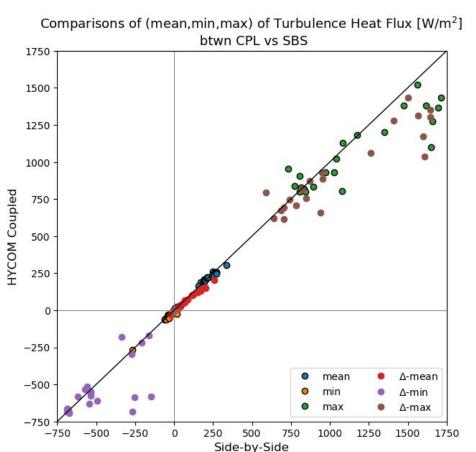
Blue: FV3atm domain Red: HYCOM domain

1. Track and Intensity Forecasts

- Vmax and Pmin at T=0 are already under-estimated. Vortex initialization and/or data assimilation needed.
- Ocean coupling impact became significant from day 2.
- The HCPL intensity is under-estimated by an average of 30 kt/21 hPa at later lead time, compared to the HSBS.

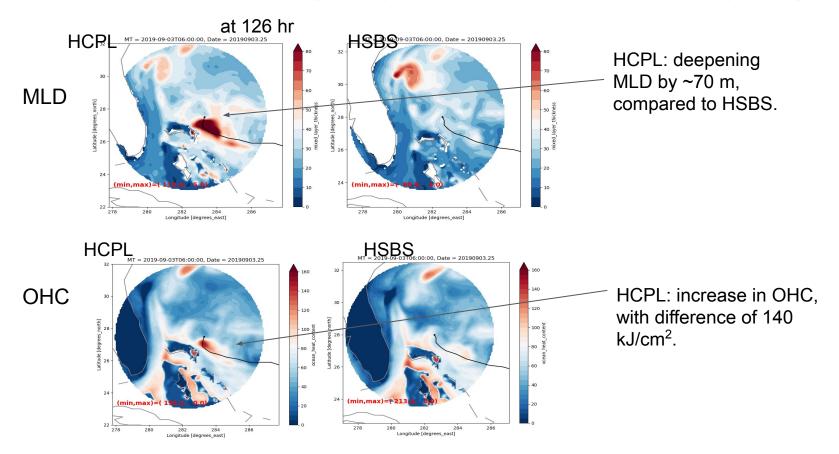


Comparisons of ocean variables between HSBS and HCPL

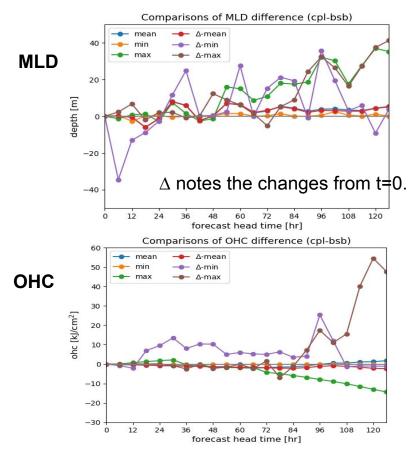

TC-scale analysis (radius <= 500 km):

- Turbulence Heat Flux =
 Sensible and Latent heat flux
- 2. Ocean Heat Content
- 3. Oceanic Upper Layer Conditions

SST (left) and SST cooling (right)



2. Storm Turbulence Heat Flux



- Large turbulence heat flux exchange exists at 126 lead hour at a maximum of ~1025 W/m² (HCPL) and ~1600 W/m² (HSBS): Ocean coupling under-estimates the flux by ~375 W/m².
- Maximum heat flux for HCPL is underestimated, compared to the HSBS, especially from 80-h lead time, with an average of 260 W/m². This is in part contributed by dynamic air-sea dynamic interaction during a slow storm-moving period.
 - ⇒ suggesting less heat flux feeds to a TC.

Mixed layer depth (MLD) and Ocean heat content (OHC)

Mixed layer depth (MLD) and Ocean heat content (OHC)

Time series of MLD (top) and OHC differences from HCPL

A set of minimum, maximum and average are estimated an area of 500 km radius from a TC center at the 6 hour intervals.

HCPL predicts deepening MLD and increasing OHC, implying changes in the oceanic upper layer in response to a storm.

Summary

- 1. Initial TC intensity is already ~70 kt/15 hPa weaker than the Best Track, implying the needs of vortex initialization, warm start, and/or data assimilation, to close the gap.
- 2. Without adjustment of atmospheric parameters, ocean coupling simulations result in under-predicting intensity by 30 kt/13 hPa.
- 3. The ocean coupling impact appears in intensity forecasts from lead time day 2.
- 4. The largest turbulence heat flux difference is ~375 W/m² (at 126 h), where HSBS estimates ~1600 W/m² from persistent SST, and HCPL predicts less due to the dynamical interactions between 3D-ocean and a storm.
- 5. Despite of ~50 kJ/cm² OHC more available, HCPL provides less heat flux.

Summary: Continued

- 6. The storm local impact is observed at least in the upper 300-m depth, where Z20 deepens from 240 to 290 m.
- 7. A storm changes mixed-layer depth change by O(70 m) (for Vmax=115kt).
- 8. Storm-induced SST cooling is at an order of 2°C and cold wake is estimated at ~4°C.
- 9. HCPL exhibits altering the upper condition through the interactions between the ocean steering currents and topography, resulting in an anticyclonic circulation that leads to deepening MLD (by 100 m), warming T (by 3.7°C @70 m), and downwelling (by 171 m/day @70 m).

Conclusions:

Coupling 3D ocean modeling alters the oceanic upper layer, by deepening mixed layer depth and cooling water temperature directly and indirectly.

It enhance interactions of ocean currents and topography.

Ongoing and Future HAFS-HYCOM Coupling Developments

- Conduct small-scale HAFS-HYCOM coupling retrospective tests based on the HAFS.V0.1A baseline configuration
- Enable using the atmospheric surface pressure in HYCOM coupling
- Slightly increase HYCOM ocean domain and get the HAFS-HYCOM coupling ready for the HAFS.V0.1A real-time experiment (08/01/2020)
- Use the CMEPS mediator for coupling
- Establish the three-way atmosphere-wave-ocean coupled HAFS-WW3-HYCOM system

Thanks!