DTC Update on Hurricane Supplemental Projects

Evan Kalina^{1,2,3} Man Zhang^{1,2,3} Grant Firl, Mrinal Biswas, Mike Ek^{3,4}

May 13, 2020

¹CIRES ²NOAA/GSL ³DTC ⁴NCAR

Outline

- HAFS Infrastructure Evan Kalina
- HWRF Physics in CCPP at NOAA/GSL Man Zhang
- HWRF Physics in CCPP at NCAR Mrinal Biswas/Mike Ek

HSUP Resources \$135 K (PoP: Jul 2019-Jun 2021)

HAFS Infrastructure PI: Evan Kalina

Deliverables:

- Establish an authoritative UFS workflows repository in GitHub with CROW code as the starting point (HU 12/2019)
- Review the design and implementation of CROW with community partners (HU 06/2020) Demonstrate that CROW or a CROW alternative can interact with the Common Infrastructure for Modeling the Earth (CIME) for building and running simple forecast model configurations (HU 06/2020)
- Plan and document the design of the transition-to-operations workflow for the UFS hurricane application based on collected requirements and review with technical and scientific partners (HU 09/2020)
- Demonstrate a workflow for a HAFS configuration that is suitable for simplified benchmarking that is part of a transition to operations, including the ability to do cycling without full DA (HU 06/2021)

CROW review held on April 28

- Virtual meeting with Google Meet
- 60-70 participants(!) from GSL, NCAR, DTC, EMC, HRD, AER, GMU, SUNY Albany, and more
- Followed by UFS Workflows Workshop

CROW review goals

- Understand direction of HAFS and UFS workflows development
- Discuss feedback that can inform the HAFS workflow design
- Gain familiarity with CROW
- Discuss whether CROW is an improvement over the existing HAFS configuration system
- Progress towards deciding whether to use CROW in HAFS

CROW review discussion

• Advantages (not comprehensive)

- CROW can generate Rocoto and ecFlow workflows
- Opportunity to unify configuration managers across UFS
- YAML offers more features for writing and organizing configuration files than .INI files
- Underlying knowledge of CROW not necessary for HAFS users and most developers
- <u>Documentation exists</u> (and is being expanded)
- Disadvantages (not comprehensive)
 - Need CROW knowledge to add new features
 - CROW would need to go to operations, and we do not yet know whether NCO would accept CROW

Next steps

- Report summarizing CROW review feedback, to be provided to EMC partners
- Decision on whether to use CROW is needed, preferably within next ~3 months
- Will work with Mariana and Rocky to prototype a HAFS workflow that incorporates CIME
 - Current plan is to use the existing HAFS configuration system in this prototype

HSUP Resources \$62 K (PoP: Aug 2019-Jul 2021)

HWRF Physics in CCPP (GSL) PI: Man Zhang

Deliverables:

- HWRF F-A, saSAS, and RRTMG parameterizations in CCPP (Jan 2020)
- HWRF Physics Suite Test Plan (Apr 2020)
- Successful HAFS v0.a runs using the HWRF suite (Apr 2020)
- Inform preliminary results to EMC (Mid-May 2020)
 - Assemble a prototype HWRF physics suite
 - Complete HAFS v0.a (GSL) and HAFS v0.b (NCAR) runs on Hera
 - Conduct full physics test on Orion; and conduct standard assessment for tropical cyclones, such as track error, intensity bias and error using MET-TC (Model Evaluation tools for Tropical Cyclones) tool

Report on final test results (Jul 2020)

Developmental Testbed Center-

The HWRF physics suite and the HAFS_p0.1 suite

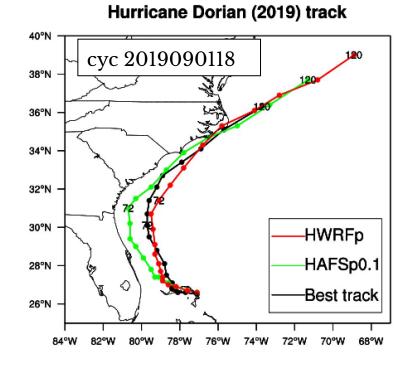
to be employed in HAFS v0.A/B

Scheme/Suite	HWRF	HAFS_p0.1	
Microphysics	Ferrier-Aligo with separate hydrometeor species advection		
PBL	K-EDMF K-EDMF w/ HWRF namelist settings w/ HWRF namelist settings		
Deep/shallow cu	saSAS with HWRF settings on in all domainssaSAS with GFS settings of all domains		
Radiation	HWRF-RRTMG	GFS-RRTMG	
Surface layer	GFDL	GFS w/ HWRF namelist settings	
LSM	HWRF-Noah	GFS-Noah	
Orographic gravity wave drag	on for 13km; off for 3 km	km on for 13km; off for 3 km	
Convective gravity wave drag	off off		
Ozone	NRL_2015	NRL_2015	
H2O	NRL_2015	NRL_2015	

*Yellow highlights indicate aspects that differ between the suites.

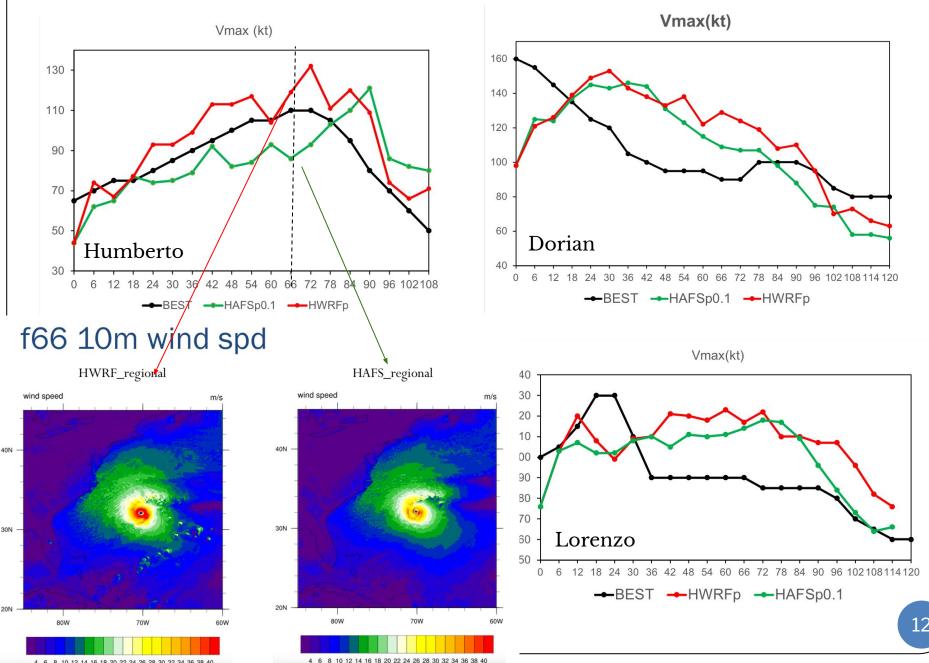
* GFDL surface layer scheme and HWRF Noah are not included in current HWRF physics repo

Developmental Testbed Center-

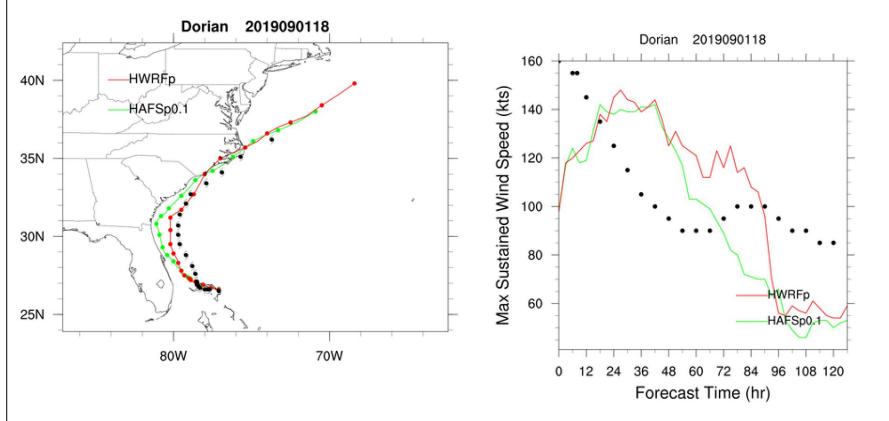

HWRF Physics Schemes in CCPP

dtc/hwrf-physics branch on NCAR Github ccpp-physics repo includes:

- Ferrier-Aligo MP scheme with separate hydrometeor species advection
 - Lower RH threshold for the onset of condensation in outer domain: RHgrd=0.975 for outer domain; RHgrd=1.0 for 3-km domain
- **Generalized saSAS** with HWRF features:
 - hwrf_samfdeep = .T.
 - hwrf_samfshal=.T.
- **Generalized RRTMG** with HWRF features:
 - Thompson cloud fraction scheme (icloud=3)
 - Exponential cloud overlap method for LW/SW scheme (iovr_lw/iovr_sw=4)
- **Generalized K-EDMF PBL** with HWRF features (NCAR task):
 - hurr_pbl =.T.
 - moninq_fac =-1.0


Track Forecasts in HAFS v0.a

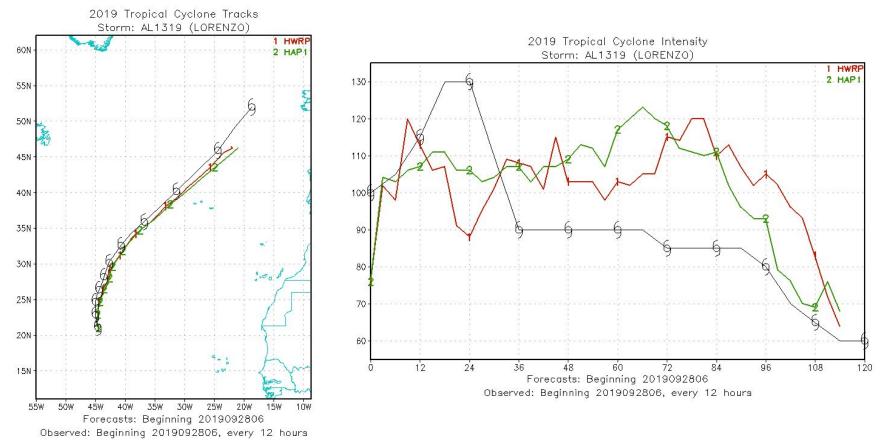
Hurricane Humberto (2019) track 45°N cyc 2019091600 40°N 35°N HWRFp 30°N HAFSp0.1 Best track 25°N 85°W 75°W 70°W 65°W 80°W 60°W 55°W Hurricane Lorenzo (2019) track 55°N HWRFp 50°N HAFSp0.1 114 114 45°N Best track 40°N 35°N 30°N 000 25°N cyc 2019092806 20°N 50°W 40°W 20°W 30°W 10'



- HWRFp physics:
 - F-A, generalized RRTMG, saSAS, PBL with HWRF namelist settings
 - Using GFS surface layer scheme with HWRF namelist and Noah LSM

Intensity Forecasts in HAFS v0.a

Dorian in HAFS v0.b


HWRFp in HAFS v0.b produces similar results as in HAFS v0.a

Courtesy of M. Biswas (NCAR/DTC)

Developmental Testbed Center-

DTC

Lorenzo in HAFS v0.b

HWRFp (HWRP) in HAFS v0.b (HAP1) produces similar results as in HAFS v0.a Courtesy of M. Biswas (NCAR/DTC)

Developmental Testbed Center-

DTC

Wall Times on Hera

HAFS v0.a: npx, npy, npz = 2881, 1921, 64

	HAFSp0.1	HWRFp	difference
Lorenzo	11499	14294	+24.3%
Dorian	11456	14325	+25%
Humberto	10997	13590	+23.6%

HWRFp requests slightly higher computational resource

HSUP Resources \$86K (PoP: Aug 2019-July 2021)

HWRF Physics in CCPP (NCAR) PI: Mike Ek

Deliverables:

- (1) Implement parameterizations from NOAA WRF model physics suite into the Common Community Physics Package (CCPP): EDMF PBL, GFDL surface-layer, and Noah land model schemes.
- (2) Test this suite in a prototype configuration of the Hurricane Analysis and Prediction System (HAFS), for a number of test case hurricanes.

Status:

PBL code: in HWRF physics repo and being tested alongside rest of available HWRF schemes

Noah land code: runs as substitute for GFS Noah LSM in operational suite and combined with GFDL surface layer in FV3 for one C96 regression test

Surface layer: runs as substitute for GFS surface layer in operational suite and combined with HWRF Noah LSM r in FV3 for one C96 regression test

To Do: Submit new PRs to HWRF physics repo after cleaning up debugging

statements/history, test with rest of HWRF suite

HSUP Resources \$86K (PoP: Aug 2019-July 2021)

HWRF Physics in CCPP (NCAR) PI: Mike Ek

Next Steps:

- Combine with all HWRF physics
- Conduct full physics test on Orion
- Conduct standard assessment for tropical cyclone using MET-TC (Model Evaluation tools for Tropical-Cyclone) tool

