





# HAFS AT NOAA AOML: GRID DEVELOPMENT, PHYSICS INVESTIGATION, AND TC ANALYSIS

Hazelton<sup>1,2</sup>, X. Zhang<sup>1</sup>, W. Ramstrom<sup>1,2</sup>, G. Alaka, Jr. <sup>1</sup>, H. Chen<sup>1,2</sup>, M.-C. Ko<sup>1,2</sup>, R. St. Fleur<sup>1,2</sup>, S. Gopalakrishnan<sup>1</sup>, and F. D. Marks, JR. <sup>1</sup>

(¹AOML/HRD & ²UM/CIMAS)

#### **Collaborators**:

A. Mehra, H. Winterbottom, J. Dong, B. Liu, Z. Zang, and V. Tallapragada (NCEP/EMC)

L. Harris, Z. Liang, M. Morin, M. Bender, T. Marchok, and S.-J. Lin (GFDL)

### **OVERVIEW**

- > NOAA AOML is working on multiple aspects of development of the Hurricane Analysis and Forecast System (HAFS)
- > Collaborative effort with EMC, GFDL, ESRL, with feedback from operational centers
- > The "F" in the HAFS system will be based off of nested FV3
- > This presentation will focus on work to date, including:
  - 1. FV3 global-nest configuration, nested grid development (multiple nests, progressing toward moving nest)
  - 2. Physics changes based on observations
  - 3. TC research (Michael case study based on ensembles)

### I. FV3 global-nest configuration, nested grid development

2. Physics changes based on observations

3. TC research (Michael case study based on ensembles)

### GLOBAL/NEST LAYOUT



- > 2017-2018 real-time Atlantic runs at GFDL were based on a layout with a tile centered at -57W, 25N
- > Similar configurations for the EPAC/WPAC can be derived by moving the tiles around
- None of these configurations are optimal for a multiple-nest/moving-nest global configuration (corner points in the Caribbean and/or Bay of Bengal)

### TROPICAL CHANNEL CONFIGURATION



➤ Layout of the 6 tiles for global TC prediction

### GLOBAL CUBED-SPHERE CONFIGURATION



- ➤ Global cubed-sphere for "Tropical Channel" layout
- >Atlantic tile covers entire MDR, Caribbean, Gulf

# LOCATIONS OF TC LIFETIME MAXIMUM INTENSITY



Ramsay, Hamish. 2017 "The Global Climatology of Tropical Cyclones." Oxford Research Encyclopedia of Natural Hazard Science. 15 Aug. 2018.

### IRMA EXAMPLE (7-DAY FORECAST)



- Track is generally consistent with obs (slightly NE by Day 7)
- > Storm is very intense (down to 890 hPa in the model)
- > Ocean coupling needed
- Evaluation and re-calibration of global physics parameterizations in tropics needed

### **MULTIPLE NESTS**



- One of the first steps towards a global moving-nest configuration is the ability to do multiple static nests in one global run
- ➤ This capability is in progress (grid and IC generation is done, model runs still in testing)

- Incremental approach to nest development:
  - > Two static nests (almost done)



- Incremental approach to nest development:
  - > Two static nests (almost done)
  - > Telescoping static nests



- Incremental approach to nest development:
  - > Two static nests (almost done)
  - > Telescoping static nests
  - > Nest moving within one tile



- ➤ Incremental approach to nest development:
  - > Two static nests (almost done)
  - > Telescoping static nests
  - > Nest moving within one tile
  - Nest moving across an edge (likely needed for recurving cases and long tracks)



- ➤ Incremental approach to nest development:
  - > Two static nests (almost done)
  - > Telescoping static nests
  - > Nest moving within one tile
  - ➤ Nest moving across an edge (likely needed for recurving cases and long tracks)
  - ➤ Nest crossing a corner (hopefully less frequent but needs to be dealt with)



# DEMONSTRATION OF FUTURE (MULTIPLE MOVING NESTS IN A GLOBAL FORECAST)



- ➤ Global 13-km run with a static 3-km Atlantic nest
- Yellow boxes show how moving nests could follow 5 TCs globally



### PHYSICS MODIFICATIONS

- ➤ Modifications to surface and PBL physics based on comparison with observations (Jun Zhang)
- > C<sub>D</sub> lowered (capped at a slightly lower wind speed) based on a fit with observations from multiple field experiments
- $ightharpoonup C_k/C_d$  ratio closer to observed value of 0.63 reported by Zhang et al. (2008)
- ➤ Tests of Irma/Michael showed similar pressure but higher wind speed





### PHYSICS MODIFICATIONS



- $ightharpoonup C_D$  changes combined with tuning to the lpha parameter in the GFS EDMF PBL scheme to reduce vertical diffusivity
- > Similar to what was done in HWRF
- > Results in narrower wind swath (also slight track shift)
- ➤ This wind swath narrowing is positive based on a consistent large bias noted in 2017



# FUTURE DIRECTIONS: PHYSICS MODIFICATIONS

- > At HRD, we want to take advantage of high-quality obs to help test/adjust model physics
- > Further changes to the PBL (testing YSU or other schemes through CCPP) is one priority
- > Testing of GFDL microphysics and other microphysics schemes in a TC context another goal
- > Take advantage of HRD observations to evaluate physics changes in a structural context

|     | <ol> <li>FV3 global-nest configuration, nested grid development</li> </ol> |
|-----|----------------------------------------------------------------------------|
|     | 2. Physics changes based on observations                                   |
| 3 - | TC research (Michael case study based on ensembles)                        |

### HURRICANE MICHAEL STUDY

- > The global-nested configuration was applied to study the evolution of Hurricane Michael (2018)
- > Michael rapidly intensified despite strong shear in excess of 20 kt
- > 40 members from GDAS (plus deterministic GFS) were selected to create a 41-member ensemble
- > Initialized at 1800 UTC October 7, 2018 (12 hours after genesis)
- > Goal is to use this new modelling system to study RI of a sheared TC

### MICHAEL TRACK FORECASTS



- > Tracks all correctly show path through Yucatan channel
- ➤ Slight left-of-track bias near landfall in some members

### MICHAEL INTENSITY FORECASTS



- ➤ Large intensity spread (900-980 hPa peak)
- > Many members intensified close to observed, some stayed weak
- ➤ Good set to study differences in structure, shear



### SHEAR EVOLUTION



- > MSLP shaded by shear (kt)
- > Observed (from SHIPS) shown in diamonds
- > Shear very high (>20 kt early)
- > Shear decreased to ~10 kt near landfall
- Significant intensification in most members late as shear decreased
- > Some also deepened quickly despite largescale shear early

### COMPOSITES OF STRONG/WEAK MEMBERS



- Composited based on intensity change from 036-060h forecast
- Mid-level RH and Precipitable water examined
- Large differences ins moisture (especially upshear)
- Importance of moisture discussed for other sheared TCs (Nguyen et al. 2017, Rios-Berrios et al. 2018)

### STRONG MEMBER VS. WEAK MEMBER





- > Shear was very similar between the two members
- > The moisture differences were key
- > Specifically, the dry air penetrated the core in the weak member, but did not in the strong member

### COMPARISON WITH OBSERVED RADAR DATA







- $\triangleright$  In both members, outer-core (r = 100-200 km) convection is confined to the eastern (downshear) region
- > However, in the strong member, a core of more symmetric precip wraps around upshear
- > This structure was also seen in P-3 observations from the same time

# FUTURE DIRECTIONS: TC ANALYSIS

- > Take advantage of the quality of the developing HAFS system to analyze complex TC research problems
- > Study TCs that prove challenging to HAFS (and/or other models) during the 2019 real-time demo
- > Integrate and compare with observations
- > Refine an ensemble system for high-resolution prediction (based of the "A" in HAFS?)

### **SUMMARY**

- > HAFS work at AOML incorporates several aspects of model development and analysis
- > Nesting capability being enhanced, progressing towards global multiple moving nests
- > Physics evaluations and refinement based on observations will become critical as new physics options are introduced
- > HAFS will be used for research into problems like TCs in shear, rapid intensification, and others
- > We look forward to collaborating with our partners to continue this promising work

