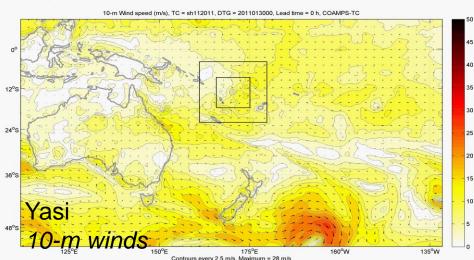
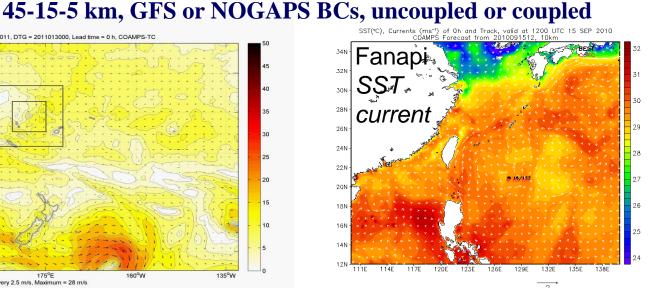


2011 COAMPS-TC Ensemble HFIP-TJET Proposal

Alex Reinecke, Jim Doyle, Carolyn Reynolds


COAMPS-TC System Overview Navy's Next Generation TC Model



•Goal: Significantly improve forecasts of TC intensity with sufficient fidelity to capture rapid intensity changes, structure, and ocean response, along with probabilistic predictions.

- •Analysis: Vortex relocation, 3D-Var (NAVDAS), synthetic observations **Ensemble Kalman Filter (using DART) (focus of this talk)** •Atmosphere: Nonhydrostatic, moving nests, CBLAST fluxes, dissipative heating, shallow convection, spray parameterization option **3D-Var** (NCODA), NCOM, SWAN, Wave Watch III options •Ocean:
 - Members drawn from EnKF analysis (focus of this talk)

•Configuration:

•Ensemble:

COAMPS-TC Overview of Tests and Improvements

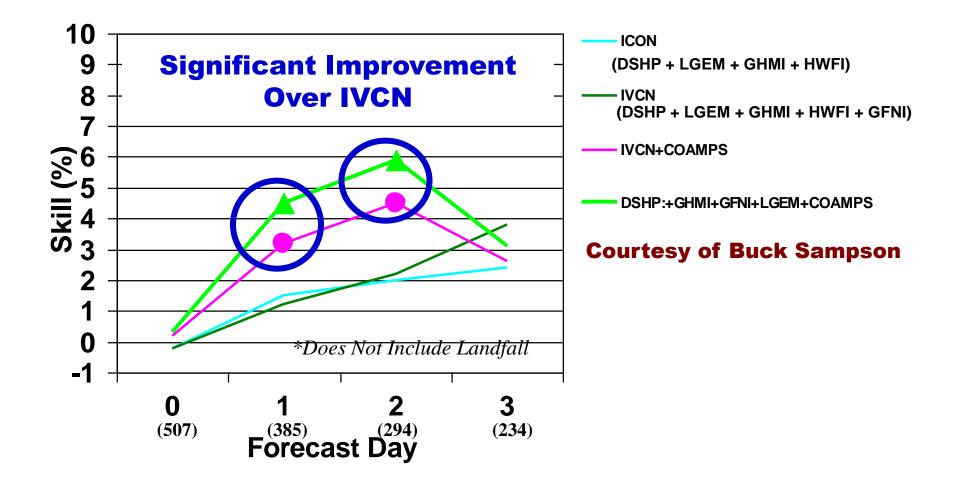
- > HFIP Retrospective and Real-Time Tests
- **Retrospective tests:** 400+ cases WATL, EPAC 2008-2009
- Retrospective tests (underway): 900+ cases WATL, EPAC 2008-2010
- Real time: 2008, 2009 (WATL, WPAC), 2010 (WATL, EPAC, WPAC)
- **ITOP:** a) coupled 45/15/5 km, b) 10-km invest, c) adjoint air-ocean targeting


> Improvements to COAMPS-TC for 2011:

- Analysis: Additional obs. (radiances, TPW), new synthetics, balance step
- **Physics:** New Fu-Liou radiation, new NRL microphysics, improved PBL
- Air-Sea Coupling: More robust system, 3D-Var (NCODA), interface develop.
- New Capabilities: <u>EnKF (w/ DART)</u>, nested adjoint
- Real-time Stream 1.5/2 Demonstration for 2011
- Deterministic real-time: HFIP (WATL, EPAC), HFIP/JTWC (WPAC, SH, IO)
 Run on Cray XT5 at DoD HPC Navy DSRC
 - **Ensemble:** HFIP (WATL, EPAC) (Proposed to run at NOAA on T-Jet)

COAMPS-TC 2010 Real-Time W. Atlantic Forecasts

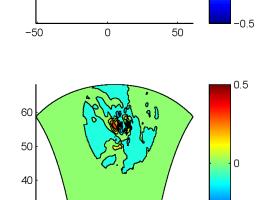
COAMPS-TC Top Dynamical Model for Intensity in WATL (30-66h).
36-48 h Skill Comparable to Statistical Models (LGEM).


2011 HFIP-TJET Proposal

NRL Marine Meteorology Division

Atlantic Intensity Consensus Intensity Skill Relative to 2006 NHC Consensus

Addition of COAMPS-TC Improves the Intensity Consensus for 2009 and 2010 Atlantic Forecasts


Proposed T-Jet System

Data Assimilation System

Serial Ensemble Kalman Filter

- Data Assimilation Research Testbed (DART) ••
- 6-h assimilation cycle
- 2-way nested data assimilation
 - Each nest updated with same innovation
 - Highest resolution nest defines innovation
- Boundary conditions from global ensemble
 - GFS EnKF preferred
 - NOGAPS-ET possible

Ο

50

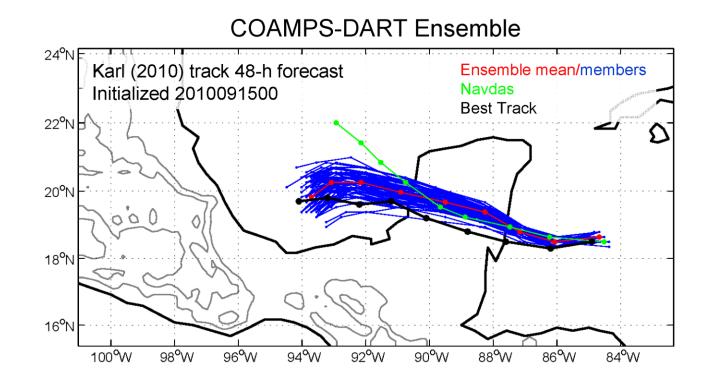
50

40

30

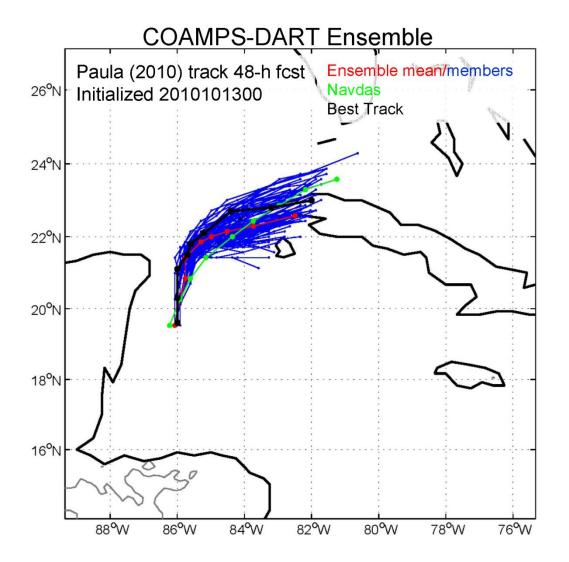
30

-50


0.5

0

2010 Atlantic Test Cases Karl



- Initial test of DA and forecasting systems promising.
- More samples needed for statistical meaningful sample

2010 Atlantic Test Cases Paula

- Hypothesis: Better initial synoptic-scale environment will improve track forecast
 - Focus on satellite observations (e.g. radiances, gps-ro)
 - Primary source of thermodynamic data over the ocean

Greater coverage than radar observations

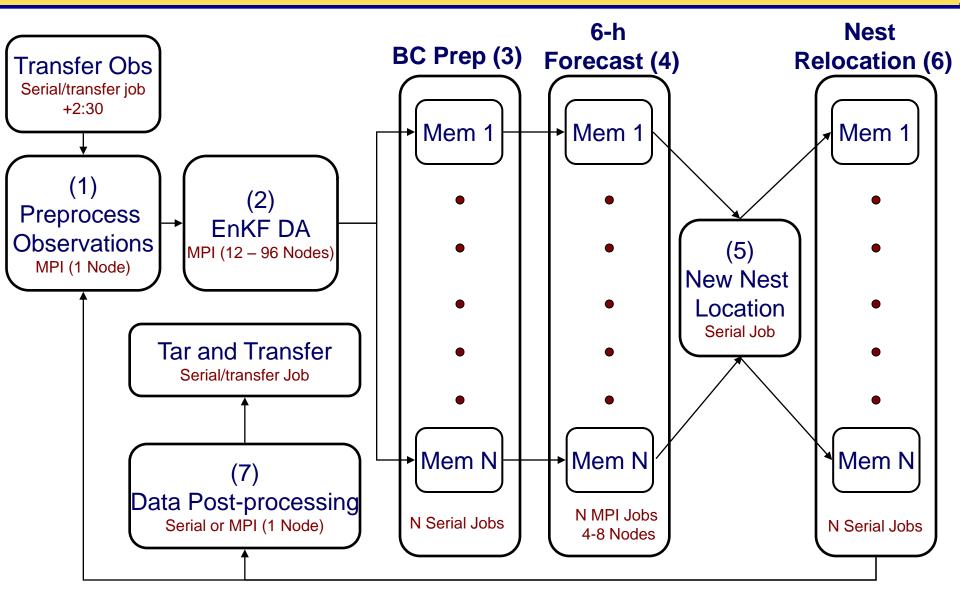
- Radar observations do not cover most tropical cyclones
- Data sets available for every ocean basin at all times

Predictability issues:

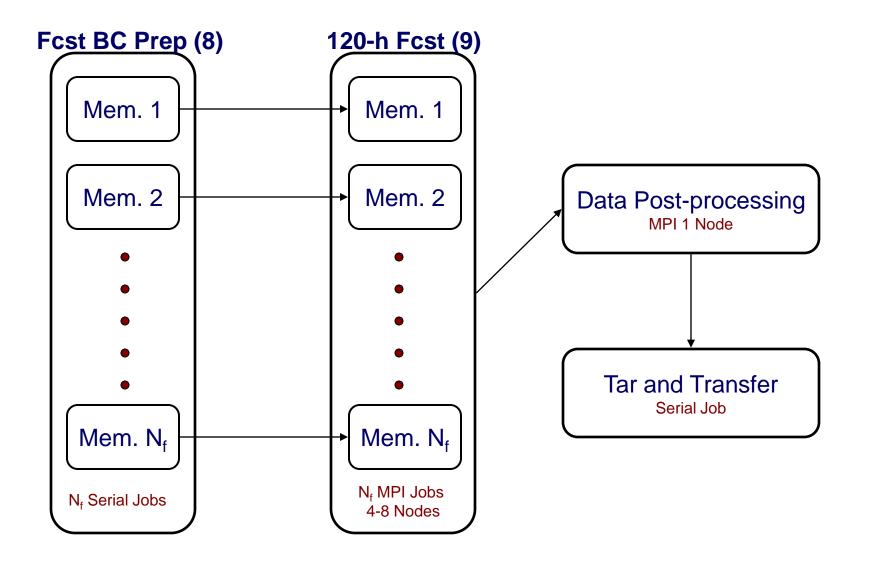
- Hypothesis: Satellite's observe structures with greater predictability than inner-core observations (e.g. radar).
- More bang for your buck.

- Satellite Based Observations:
 - AMSU-A up to channel 8 (CRTM)
 - GPS-RO Bending Angle (ROPP)
 - WindSat and SSMI/S precipitable water
 - AScat and NRL WindSat
 - Geostationary Winds
- Conventional Observations:
 - ACARS/MDCARS
 - Vortex position
 - RAOB
 - SFC/SHIP data

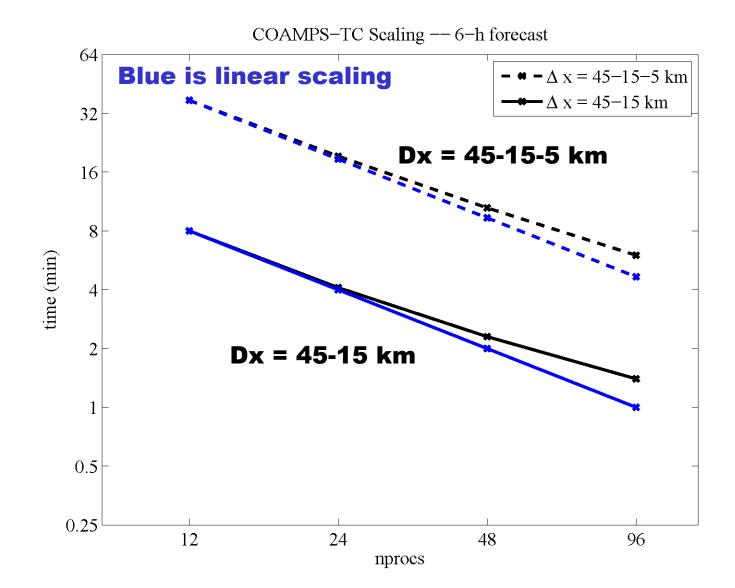
T-JET Setup & Requirements


2011 HFIP-TJET Proposal

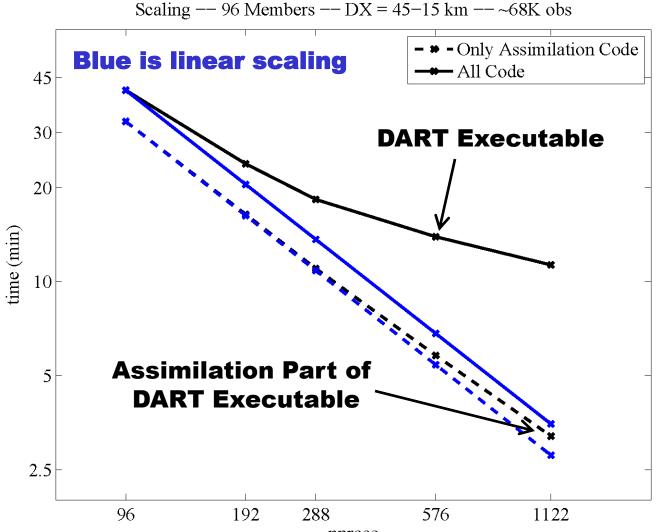
NRL Marine Meteorology Division



Data Assimilation Cycle



COAMPS Scaling



DART Scaling

Configuration 1	Configuration 2
 45-15-5 km horizontal resolution 96-member DA ensemble 6-h data assimilation cycle 120-h forecast for 10 members one time a day 	 45-15 km horizontal resolution 96-member DA ensemble 6-h data assimilation cycle 120-h forecast for 20 members two times a day.
Configuration 3	Configuration 4
 45-15-5 km horizontal resolution 80-member DA ensemble 6-h data assimilation cycle 120-h forecast for 10 members one time a day 	 45-15 km horizontal resolution 80-member DA ensemble 6-h data assimilation window 120-h forecast for 20 members two times a day

Nodes/Procs	Time
1 Node	5-7 minutes
48 Nodes	21-25 minutes
96 Serial Jobs	< 3 minutes each (large i/o, can be variable)
96 MPI Jobs 2 Node Jobs or 4 Node Jobs	24 minutes each 14 minutes each
1/96 Serial Job	< 3 minutes each
10 Serial Jobs	6-13 minutes (large i/o, can be variable)
10 MPI Jobs 4 Node Jobs or 8 Node Jobs	220 minutes each 130 minutes each
	1 Node48 Nodes96 Serial Jobs96 MPI Jobs2 Node Jobs2 Node Jobs0r 4 Node Jobs1/96 Serial Job10 Serial Jobs10 MPI Jobs4 Node Jobs4 Node Jobs

Nodes/Procs	Time
1 Node	5-7 minutes
24 Nodes	19-23 minutes
96 Serial Jobs	< 3 minutes each (large i/o, can be variable)
96 MPI Jobs 2 Node Jobs or 4 Node Jobs	10 minutes each 7 minutes each
1/96 Serial Job	< 3 minutes each
20 Serial Jobs	6-13 minutes (large i/o, can be variable)
20 MPI Jobs 4 Node Jobs or 8 Node Jobs	50 minutes each 33 minutes each
	1 Node24 Nodes96 Serial Jobs96 MPI Jobs2 Node Jobs2 Node Jobsor 4 Node Jobs1/96 Serial Job20 Serial Jobs20 MPI Jobs4 Node Jobs4 Node Jobs

• Will observation sets be available on T-Jet?

- Will there be an predetermined cutoff time for observations?
- What is the format of the data?

• Will the GFS global ensemble be available?

- We would like data to at least 0.4 hPa for boundaries.
- How many members will be available for the DA cycle?
- How many members for forecasts?
- What is the format of the data?

• Will there be time to re-run members if they don't run properly?

Questions?

Step	Nodes/Procs	Time
Preproc obs	1 Node	5-7 minutes
Data Assimilation	40 Nodes	21-25 minutes
BC Prep	80 Serial Jobs	< 3 minutes each (large i/o, can be variable)
6-hr forecast	80 MPI Jobs 2 Node Jobs or 4 Node Jobs	24 minutes each 14 minutes each
120-hr forecast BC prep	10 Serial Jobs	6-13 minutes (large i/o, can be variable)
120-hr forecast	10 MPI Jobs 4 Node Jobs or 8 Node Jobs	220 minutes each 130 minutes each

Step	Nodes/Procs	Time
Preproc obs	1 Node	5-7 minutes
Data Assimilation	20 Nodes	19-23 minutes
BC Prep	80 Serial Jobs	< 3 minutes each (large i/o, can be variable)
6-hr forecast	80 MPI Jobs 2 Node Jobs or 4 Node Jobs	10 minutes each 7 minutes each
120-hr forecast BC prep	20 Serial Jobs	6-13 minutes (large i/o, can be variable)
120-hr forecast	20 MPI Jobs 4 Node Jobs or 8 Node Jobs	50 minutes each 33 minutes each