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A successful demonstration
of the COAMPS-TC ensemble DA and
forecasting system

Provided real-time ensemble forecast for 15 named storms

e 257 80-member data assimilation cycles
¢ 140 10-member forecasts

e Forecast for the Atlantic, Eastern-Pacific, and Western-Pacific Basins from 01 August to 30
September, 2011

Real time delivery of data:

e Web output for visualization
* Tracks to ATCF and NCAR DTC for statistics (and forecasters use?)

Identification of several areas needing improvement

e Archive of data for future analyses and experiments

Demonstrated real-time capability of the DART system

e Scalability and efficiency fully demonstrated



Real Time COAMPS-TC
Data Assimilation Ensemble

R

Serial EnKF (DART)

* Two-way interactive DA — highest resolution nest defines the innovation

e Observations: Surface/ship stations, cloud-track winds, aircraft data,
dropsondes, radiosondes, synthetic tropical cyclone observations, storm
position.

e Distance based localization, multiplicative based adaptive inflation.

N

80-member ensemble for Data Assimilation

¢ 6-hr update cycle
® GFS-EnKF fields interpolated to COAMPS grid for the initial ensemble
e GFS-EnKF lateral boundary conditions.

DA and forecast for Atlantic, EastPac, and WestPac basins

¢ Fixed 45-km mesh for each basin

e Imbedded 15- and 5-km moving nests

* Only one set of high resolution nests per basin

* For each storm mesh is initialized with GFS-EnKF fields

by

sl West Pac%'jﬁ()main 1

Ay

East Pacific Domain %ﬂ,

30°N |

15°N

S
ic Domain S

1 1 1 i I
180°W 165°W 150°W 135°W 120°W

Neith

45°N -

30°N |

15°N



Moving Nests

A challenge for regional ensemble
data assimilation systems.

e Each member will move independently

e Ensemble prior nest location not
constrained to be collocated

Compute prior mean nest location
and define a new nest there

¢ Relocate nest of each member to the mean
nest location

e I[nterpolate fields where mean and member
nest do not overlap

e Directly insert fields in overlap region
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Ensemble of Moving Nests
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For initial ensemble nests move in an inconsistent manner

As ensemble spins-up, nests location nearly converged

Algorithm is robust and can handle members missing nest




COAMPS-TC Forecast Ensemble

10-members (option to run 20-members)

e 120-h lead time twice daily (00 and 12 UTC)
e GFS-EnKF lateral boundary conditions
e Only group to run real-time forecasts from a cycling ensemble DA system (?)

™
Perturbations

e |C perturbations from member 1-10 of the DA ensemble
e No perturbations to model dynamics or parameterizations

Graphics output to web

e Summary plots for intensity, size, and track
e 15 and 5 km mesh graphics computed in storm relative coordinate



Mean absolute error (nm)

Track and Intensity Errors
Homogeneous Comparison -- 2011
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COAMPS (det. & ens.) track forecast worse than global models, intensity is better.
Ensemble system track forecast are better than deterministic system beyond 72 hours.
Low wind speed bias for ensemble system from 0 to 48 hours.



Track Spread-Skill Relationship

Homogeneous comparison to GFS-Hybrid
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* Track spread is comparable to HFIP GFS-Hybrid system
* Large track errors are similar to deterministic COAMPS-TC system

* On average spread-skill good at analysis time



SLP Analyses

Assimilating u/v synthetic data

Background SLP Analysis SLP
mean & standard deviation mean & standard deviation
TC=12L, DTG =2011083112, Tau = 6 h, Nest = 3, Mems = 80 TC=12L, DTG =2011083118, Tau = 0 h, Nest =3, Mems = 80
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* Poor quality analysis at several assimilation times
* Leads to low bias in the forecast intensity
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Track errors and assimilation quality

TC=12L, DTG = 2011090200, Tau = 0 h, Nest = 3, Mems = 80
1

120

Spread (Sample Std. Dev.)
Skill (MAE)

Prior spread-skill of track

Well behaved analysis when the prior track error is small
Poor quality analysis when the prior track error is large
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Kalman gain at several synthetic
U-wind obs.
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Storm scale assimilation
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Large ensemble variability due to sharp gradients and poor
characterization of observation error leads to over fitting observations
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Not fundamentally linked to synthetic observations, happens in cases
without synthetics where there are many observations (e.g. Irene)




Non-Gaussian Prior Distributions

Prior skewness of 10-m zonal wind
Katia (12L) -- 12 UTC, 02 September 2011
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EnKF, variational methods, and hybrid methods do not and
cannot account for non-gaussian distributions



Storm Relocation Distribution

Prior skewness of 10-m zonal wind
Katia (12L)
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Even with a storm relative data assimilation system,
non-Gaussian structures dominate the prior distribution
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Explicitly account for 3" moments

Quadratic Filter

SLP Prior 12z, 02 Sept. & Linear Filter. ‘ Quadratic Filter.
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X = 7]: + Kv + Q |:V2 -, + a1V:| a, — Correction to Oth order term
—_——— - > o, — Higher-order correction to the Kalman gain
Kalman Filter New Term

Hodyss, D, 2011: Ensemble State Estimation for Nonlinear Systems Using Polynomial Expansions in the Innovation



Summary

Significant issues need to be addressed before an effective storm-
scale assimilation system can be realized.

Observation error (representativeness error) generally unknown
within tropical cyclones.

e Artificially low errors lead to the DA system to over fit the obs.
e Ad-hoc inflation of the observation error is not a desirable solution

Non-Gaussian prior distributions within the ensemble present a major
obstacle to the correct assimilation of storm-scale data

* Relocation of the TC to a common point helps, but significant 3" moments still present.
* Need to explicitly deal with 3"¥ moments.

e Testing of quadratic filter that explicitly accounts for 3" moment underway in the
COAMPS-DART framework.






