HWRF/GFDL PBL Model and Sensitivity Experiments

Jongil Han

Acknowledgment: Sun-Hee Kim

HWRF/GFDL PBL model

- Old operational NCEP GFS PBL scheme (MRF PBL scheme [Hong & Pan 1996; Troen & Mahrt 1986])
- A non-local scheme where a counter-gradient mixing due to large convective eddies is taken into account.
- A surface driven cubical diffusivity profile up to the PBL height is specified.
- Entrainment flux at the PBL top is given implicitly
- A local scheme (Louis et al. 1982) is used for free atmosphere above the PBL.

Heat flux

$$\overline{w'\theta'} = -K_h \left(\frac{\partial \theta}{\partial z} - \gamma_h \right)$$

$$K_m = \kappa w_s z \left(1 - \frac{z}{h} \right)^2$$

$$K_h = \operatorname{Pr}^{-1} K_m$$

$$\gamma_h = 7.8 \frac{(w'\theta')_0}{w_s h}$$

Non-local counter- $\gamma_h = 7.8 \frac{(w'\theta')_0}{w_s h}$ Non-local countergradient mixing term by large eddies

PBL height

$$h = Rb_{cr} \frac{\theta_{va} |U(h)|^2}{g(\theta_{v}(h) - \theta_{s})}$$

$$\theta_s = \theta_{va} + 7.8 \frac{\overline{(w'\theta')}_0}{w_s} \qquad w_s = \frac{u_*}{\phi_m}$$

Rb_{cr}: critical bulk Richardson number

h: height of zero heat flux, not height of minimum heat flux.

Vertical diffusivity for free atmosphere

$$K_{m,t} = l^2 f_{m,t}(Rig) \left| \frac{\partial U}{\partial Z} \right|$$

$$\frac{1}{l} = \frac{1}{kz} + \frac{1}{l_0}$$

 l_0 : asymptotic length scale

Current HWRF/GFDL model – 150 m Current GFS model - 150 m (unstable) 30 m (stable)

Sensitivity experiments for tunable parameters

	Localization	Critical Bulk Richardson Number	Mixing length (l_0)
CTL (current HWRF PBL scheme)	NON-local diffusion	0.5	150
EXP1	NON-local diffusion	0.25	150
EXP2	NON-local diffusion	0.5	30
EXP3 (current GFS PBL scheme)	NON-local diffusion	0.25	30
EXP4	Local diffusion	-	30

Local diffusion scheme for free atmosphere is applied through all levels

Momentum diffusivity coefficient

(CTL, 48 hour forecast, azimuthally averaged)

❖ In the hurricane environment (near neutral), diffusivity and PBL height are proportional to wind speed

Vertical profile of momentum diffusivity coefficient at RMW

(Radius of Maximum wind)

(sensitivity experiment, 48 hour forecast, azimuthally averaged)

- Smaller RiBc(e.g. RiBc = 0.25) makes the PBL height lower and the diffusivity weaker (exp1& exp3) .
- Smaller mixing length (e.g. I_0 =30 m) also makes the diffusivity weaker (exp2 & exp3) but not as much as smaller RiBc .

HWRF PBL height

VER, IKE 9, Azimuthally averaged, Init. date: 2008090300, 48 h FCST

- Smaller RiBc(e.g. RiBc = 0.25) makes the PBL height lower (exp1& exp3).
- Smaller mixing length (e.g. I_0 =30 m) also makes the PBL height low but only slightly (exp2 & exp3) .

Hurrican inten: Central pressure

VER, STORM stormid, Init. date: Date, 126 h FCST

Maximum 10m wind

VER, STORM stormid, Init. date: Date, 126 h FCST

Hurricane WRF track

Experiment summary

- In the hurricane environment (near neutral), diffusivity and PBL height are proportional to wind speed.
- Smaller RiB_c (e.g. RiB_c=0.25) makes the PBL height lower and the diffusivity weaker, and as a result, hurricane stronger.
- The effect of mixing length in free atmosphere on hurricane intensity is very small.
- The local PBL scheme which has weakest diffusivity gives rise to the strongest hurricane intensity, especially in terms of central pressure.

Critical reports for the MRF (HWRF/GFDL) PBL scheme from literature

- Too high PBL height
- Too much mixing
- Too weak low level Jet
- Too early development of the PBL in the morning

Potential improvements for the HWRF/GFDL PBL model

- Reduce RiBc and mixing length in free atmosphere
- Use local scheme for the stable boundary layer
- These modifications have been already implemented into the GFS (2010) and showed improvements in forecast skill
- Need a detailed observation (and LES experiment) for investigating the PBL turbulence structure in hurricane environment so that we can tune the model parameters

Case (single)

- IKE (2008)
- Initial time: 3rd Sep. 2008

Analysis of control experiment

(CTL, 48 hour forecast, azimuthally averaged)

VER, IKE 9, Azimuthally averaged, Init. date: 2008090300, 48 h FCST Tangential wind (contour), Min=-9.12216 ms-1, Max=53.0001 ms-1

VER, IKE 9, Azimuthally averaged, Init. date: 2008090300, 48 h FCST Radial wind (contour), Min=-9.05136 ms-1, Max=22.8004 ms-1