Ferrier Microphysics in NCEP Operational Hurricane Models

Eric Aligo, Brad Ferrier, Young Kwon^{1,2} and Vijay Tallapragada¹

¹ Environment Modeling Center (EMC)/NCEP/NWS ² I.M. Systems Group, Inc.

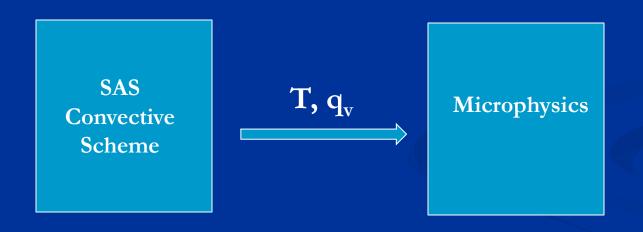
HFIP Physics Workshop
09 Aug- 11 Aug 2011

HWRF/GFDL Microphysics

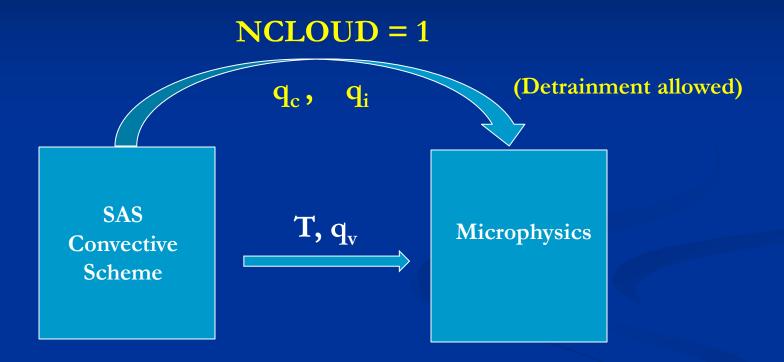
- **■** Ferrier Scheme
 - Single moment scheme
 - Predicts water vapor and total condensate (cloud water, cloud ice, snow/graupel/sleet)
 - Assumes exponential size distribution for all precipitation particles
 - Advects total condensate and water vapor
 - This unique aspect makes it computationally efficient
 - Most other schemes advect each species separately

Hurricane Flavor of Ferrier Microphysics

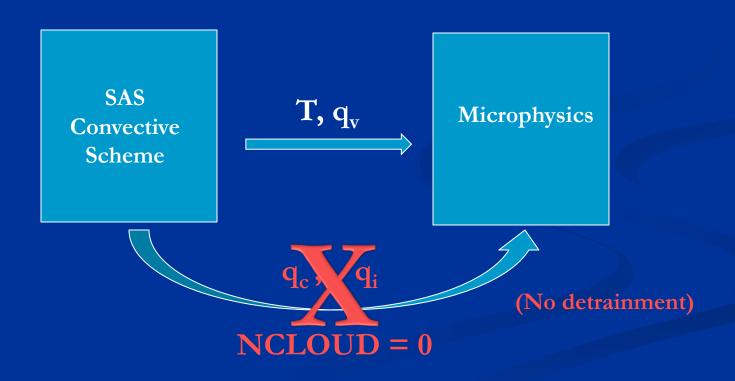
- Tailored for Tropics
 - $N_{cw} = 60 \text{ cm}^{-3} \text{ in HWRF vs } 100 \text{ cm}^{-3} \text{ in NAM}$
 - Maritime versus continental environment
 - Max temperature at which ice nucleation occurs: -5°C in HWRF vs -15°C in NAM
- Onset of condensation:
 - Parent domain (27 km)= 97.5% in the middleupper troposphere
 - Nest (9 km) = 100%


Microphysics and Hurricanes

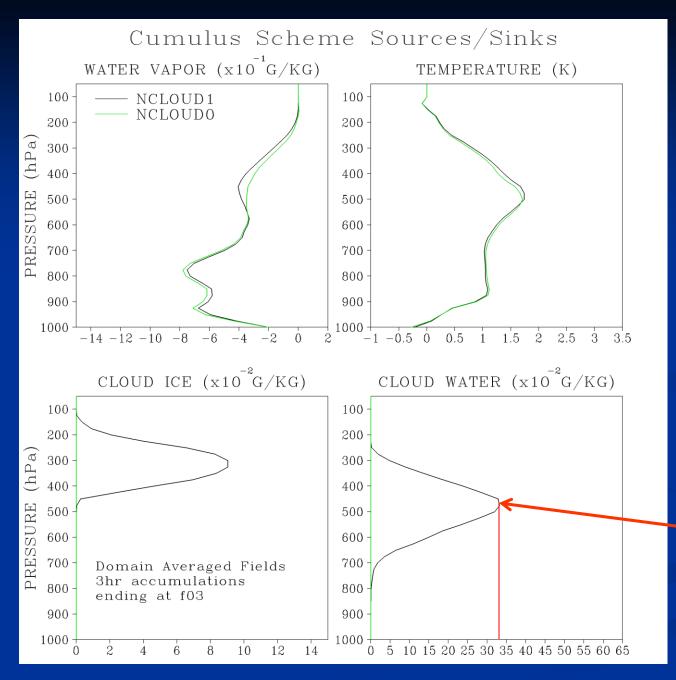
- Several studies have shown that the intensity of tropical systems is sensitive to the ice phase (Willoughby et al. 1984; Wei-Kuo Tao et al. 2010, among others)
- Melting and evaporation help strengthen downdrafts and reduce intensity/ intensification rate (Wang 2002)
- Ice processes also play a role in the horizontal distribution of rain bands (McCumber et al. 1991; Wang 2002)
- Are we finding the same results from operational hurricane models?


Evaluation of microphysical and convective processes for hurricane forecasts

- Need a tool to evaluate the impact of microphysical and convective scheme processes
 - Perform sanity checks
 - Better understand the role of specific processes
- Methodology
 - Microphysical and convective scheme tendencies and accumulations from the HWRF model are computed and tracked at every physics time step
 - BUCKETS subroutine used to set accumulation periods (3hrs, 6hrs, etc.)
 - Modify subroutines: /phys (2), /dyn_nmm (3), Registry (1) and UPP (9)
- Apply the diagnostics for a wide variety of cases

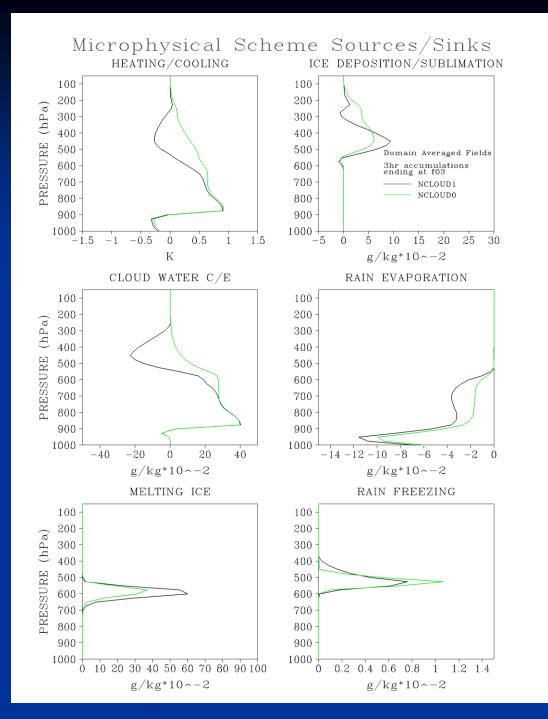

The Convective and Microphysical Scheme Communication

The Convective and Microphysical Scheme Communication



The Convective and Microphysical Scheme Communication

Model Diagnostics: Convective Detrainment Example


- NCLOUD = 1 (current setting in HWRF)
 - Detrainment of q_c and q_i is *allowed*
- \square NCLOUD = 0
 - Detrainment is *not allowed*
- Question: How do these settings impact hurricane track and intensity, and through which microphysical and convective scheme processes?

No q_i and q_c convective scheme tendencies for NCLOUD = 0. Good!

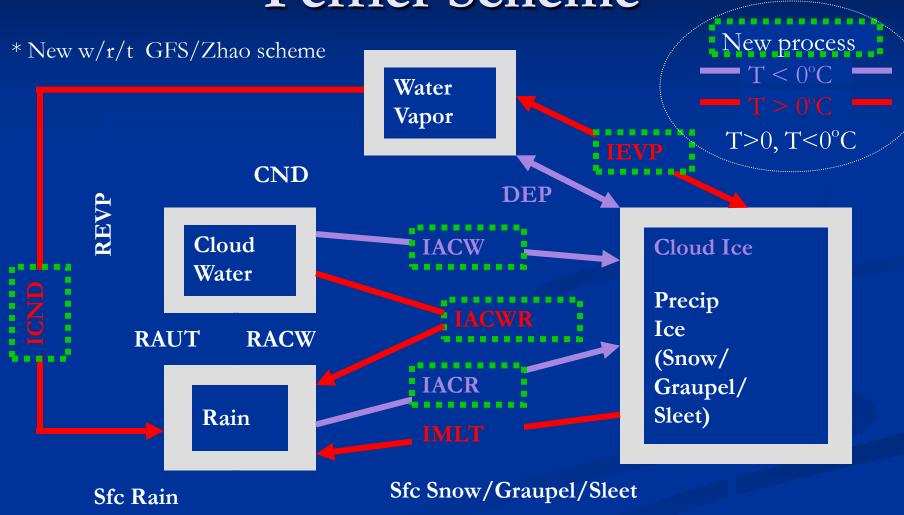
Sanity check!

 ~ 0.34 g kg⁻¹ of q_c produced by convective scheme at 475 hPa

Microphysical Scheme Sources/Sinks ICE DEPOSITION/SUBLIMATION HEATING/COOLING Domain Averaged Fields 3hr accumulations ending at f03 NCLOUD1 NCLOUDO -5 $g/kg*10^{-2}$ CLOUD WATER C/E RAIN EVAPORATION -40-8 -6 $g/kg*10^{-2}$ $g/kg*10^{-2}$ MELTING ICE RAIN FREEZING 10 20 30 40 50 60 70 80 90 100 0.2 0.4 0.6 0.8

 $g/kg*10^{-2}$

 $g/kg*10^{-2}$


At $\sim 475 \text{ hPa}$:

- Arr NCLOUD = 0
 - Slight microphysical scheme warming
 - No cloud water evaporation
- **NCLOUD = 1**
 - Slight microphysical scheme cooling
 - ~ 0.30 g kg⁻¹ of cloud water evaporation
- In this example, most of the q_c from convective detrainment is evaporated in the microphysics scheme resulting in mid-level cooling

Ongoing Work

- Construct a universal diagnostic tool
 - Evaluate impact of different microphysical schemes (e.g. Thompson, WSM6) on tropical system track and intensity
- Advect individual species of water (q_s,q_g,q_r,q_i) instead of CWM in Ferrier scheme and evaluate the impact
- Future of Ferrier Scheme in HWRF/GFDL

Microphysical Processes in the Ferrier Scheme

