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COAMPS-TC Boundary Layer Parameterization

Background

cCOAMPS-TC 1.5 order closure hurricane boundary layer param.
*Prediction of TKE following Mellor and Yamada (1982) (substantially modified)
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*Mixing Length (and S,, S, ) Often a PBL “Secret Ingredient”
1. Conventional method (operational COAMPS) follows Blackadar (1962),
Mellor and Yamada (1982), Burk and Thompson

['= (¢ [(kz+b(z/ L)+ (1/ 2))"

2. New mixing length for TCBL (Bougeault & Andre 1986; Bougeault & Lacarrére 1989)
Option for 6, for buoyancy

COAMPSP® is a registered trademark of the Naval Research Laboratory.



Comparison of Mixing Length Formulations
Bougeault and Mellor-Yamada

Bougeault Mixing Length : A nonlocal formulation depending on
turbulence kinetic energy (TKE) and thermal stability.
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e Large mixing length is concentrated around RMW.

* Mixing length is larger above 4 km than in BL.

* Bougeault mixing length is larger than that of MY.




COAMPS-TC Simulation of Isabel

Bougeault and Mellor-Yamada Comparisons
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*Stronger convection in Bougeault run.

Slightly larger size in Bougeault run.

Dropsondes were launched in the rear-right quadrant.




Evaluation of TC Boundary Layer Param.
Isabel Comparison Outer Core
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Winds (model vs. obs)
» stronger inflow
» thicker inflow depth
» no outflow

Bougeault vs. MY mixing
» Larger mixing length gives
stronger & thicker inflow.
» Momentum flux & TKE are
reasonable in both.
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Comparison of Mixing Length Formulations
How Well does COAMPS TKE Distribution Compare with Obs?

Simulated TKE profile Observation-based schematic of TKE

10 (Lorsolo et al. 2010)
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Bougeault mixing leads to much
stronger turbulence intensity.

*Turbulence in deep convection is
much stronger than in the BL.
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Comparison of TCBL in Idealized Test Case
Radial Winds (normalized)

Idealized Tropical Cyclone Test Case (w/ HRD)
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261 : *Bougeault shows faster intensification.
2] [ | » 15mstand 25 hPain 24 h

1] : *Inflow depth is deeper in Bougeault.

) * Radial inflow from MY compares better
" with dropsondes (from J. Zhang).
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COAMPS-TC Tropical Cyclone Boundary Layer
Summary and Challenges

»COAMPS-TC TC Boundary Layer Parameterization

*Good: Options for Mellor-Yamada (NRL) and Bougeault mixing lengths, glves robust
results in agreement with observations, tested for 1000’s TC cases .

Bad: Large sensitivity to mixing length, but | is still unknown for TCs

*Ugly: Lack of key observations to evaluate fully & constrain,
interactions with other processes such as microphysics & convection,
additional nonlinearities make adjoints difficult

»Challenges

TCBL: (until recently) least well observed part of storms: Under
utilized GPS dropsonde evaluations, issues with near sfc. structure, steadiness.

‘We’re not in Kansas: Departures from log-law, homogeneity, mixing length
‘Air-sea exchange: Parameterization of drag, heat, moisture, waves, spray
Balance: Super-gradient jet, implications for initialization & intensification

- Landfall: Winds tend to be too weak, asymmetric stress forcing
*TCBL rolls: Emerging evidence of rolls in TCBL, importance?

3D Coherent eddies: Gustiness, sub-roll structures may be critical




COAMPS-TC Idealized TC tests (6-km res)

*PBL2: 1.5-order turbulence
closure scheme (Mellor and
Yamada 1982)

*PBL3: Similar to PBL2, except
using the Bougeault mixing
length calculation.
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Evaluation of TC Boundary Layer Param.
Comparison of MY and Bougeault

Radial (color, knots?), Total Wind (white contours)

Winds (Bougeault)
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Structure Comparison

* BL is defined by inflow depth.
 Larger mixing length leads to
v' deeper BL;
v larger RMW;
v' weaker inflow

» Overall structure is good.

* The MY is, in general, more
consistent with the analyzed
BL based on observations.

* The gradient in wind speed Iin
the observational analysis is
significantly stronger than the
COAMPS-TC.




Evaluation of TC Boundary Layer Param.
TKE Budget

TKE budget derived from the obs.

TKE Budget (Bougeault)
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* Modeled wind shear dominates,
being consistent with the obs.

Buoyancy is very small.

600

* COAMPS shear is excessive at the
surface , above mixed layer.

*Shear production parameterization
needs to be investigated further.
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Evaluation of TC Boundary Layer Param.
Isabel Comparison Outer Core

Mixing Length
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* MY cooler and moister

e Larger mixing length
leads to stronger fluxes
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