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Wavelength: Larger-scale structures ~ 700 to 5000 m
Smaller-scale structures ~ 300 to 700 m

Velocity Perturbations: +/- 7 m s typical
DOW +/- “10s of” m s

Orientation: Typically along-mean TCBL wind, wide variability

Prevalence: Roll-scale structures ~ unknown, (35% to 70%)
Streak-scale structures: Most likely usually present



Roll Effects

TCBL connects surface fluxes with storm interior

Largest component is along-roll (roughly along-wind)
near-surface wind modulation

Rolls induce non-local & non-gradient transport of
momentum and heat across TCBL



Hypothesis: Roll fluxes are a Significant
Unparameterized Feature of TCBLSs

« TC Intensity Is, in part, related to net compensation
between the downward sink of TC momentum into the
ocean and the upward flux of enthalpy from the ocean
Into the TC interior.

« Current emphasis is on ratio of bulk flux coefficients
— C,/C, tends to decrease in high winds, what compensates?
 Rolls induce inherently non-gradient (i.e. non-local) downward
transport of momentum across the depth of the TCBL

— Models only parameterize local, down-gradient momentum flux
— Is non-gradient flux important to numerical models?
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Fig. 3. Large-scale Doppler velocity structure at
23:30:19 UTC, as measured by the DOW radar.
Strong easterly flow peaking at ~60 m s~ ' is
evident both off- and onshore. The eye of the
hurricane is at the edge of radar visibility to the
south. Visibility was severely limited by attenua-
tion. Pink curved arrows illustrate average wind
flow. Scan is at 5° elevation.

Fig. 4. High-resolution image of Doppler velocity
field to the east of Wilmington at 23:58:17 UTC.
Sub-kilometer-scale streaks caused by boundary
layer rolls modulate the mean easterly flow. Near
the radar (left) at altitudes of ~100 m agl, peak and
trough wind speed values are ~40 m s~ ' and
~10 m s ', respectively. Further from the radar
(right), peak and trough wind speed values alter-
nate from ~25 to ~55 m s~'. Azimuthal shear
values are (~30ms~'/~300m) =~ 0.1 s~ ' across
many of the rolls. Scan is at 2° elevation.
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dicular to the rolls.
Radar volumes were updated every 300 s;
these intervals were too long to permit esti-

Horizontal Flow

Fig. 5. Schematic representation of observed
shear- and wind-parallel boundary layer rolls.
High-momentum air (red) is brought to the surface
in the downward legs of the rolls, while air slowed
near the surface is brought aloft in the upward

legs.
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Fig. 6. Altitude dependence of peak wind speeds
as observed by DOW and National Weather Ser-
vice KLTX radars. DOW-measured peak speeds
at 100 m agl are nearly as high as those at 1000 m
agl as a result of momentum transport in the rolls
and agree closely with surface peak wind obser-
vations. KLT X-measured peak speeds are smaller
at low altitude because of poorer resolution and
possibly because of longer overland trajectories.
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Wurman and Winslow (1998)
Science, 280, 555-557



Example:

J. Wurman, Doppler on Wheels, Hurricane Rita, 2005
«1.2° slices every 12 seconds

-Radial \elocity

«Gate Spacing 25 m

«Azimuthal Resolution 0.25°

2 km Range Rings (8 km shown)

A<

—

/ i frore
Very Approzimate Path of Edge
of Eye

DOW and Tower Deployments in
Rita in Port Arthur 23/24 Sep 2005




Parameterization Strategy

Numerical models use a range of local closures

Develop roll flux model consistent with existing closures
— No change to existing parameterizations

— Added non-gradient flux contribution only if mean flow conditions
are consistent with roll formation

Use simple theoretical models ...

— Nonlinear similarity mean TCBL model (local, gradient fluxes)
— Nonlinear roll stability model

... in conjunction with observational data

— SAR

— Doppler Wind Lidar (on NOAA P-3)

— Radar
— ??



Scales Velocity: V,
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Nonlinear Mean TCBL
Similarity Model



Nonlinear Similarity Equations (ODES)
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Note: Parameters only appear as ratios (e.g. Re/r,).
Easy system to solve numerically



oundary Conditions
y, 0 = =oRok

Cp Is Large & Pond, max = 0.0025
Ko (Can use any parameterization)
C4RU,Y,; O
0J3
Y, 0 =8
4 Ko

(constant flux)

Reynolds Number is Key Parameter

~0
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Z—>0 y3 :1

Entrainment Flux at PBL top is easy to implement:
small effect on what follows



“Cross-Flow Instability”

Triggered by instability in cross-

: 1, . -
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Turbulence Closure

* (Almost) Any eddy viscosity parameterization
« Have Implemented
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Black Dots are Nonlinear Kepert and Wang (2001) Numerical Model
Blue dotted line is Similarity Model Driven by Kepert & Wang K(z) (39 m/s)
—> Similarity Model reproduces results of time-stepping numerical model!



Nonlinear Roll
Instability Model



Nonlinear Stability

Reynolds & Potter (1967),

A Herbert
(1983)

Stuart - Watson
(1960)

Stable R.it Unstable

0

Secondary Instability (?)

: 1d4d _dn 5 p
A=a+io=——+ =A,+ AA+AA, +---
ati i . /10 /ll

q= 2real [i A" ™) i AZ"'QM (z)]
n=0 m=0

“Stretch” eigenvalue, A4, In powers of nonlinear amplitude, A(t).
Expand eigenfunction, g,,, In harmonics of fundamental

wavenumber, a.

Find equilibrium solution (dA/dt = 0).



Growth Rate

20
Particular scale/orientation /

Depend on mean shear profile (S
Angle from Azimuthal Wind



Improved version of Foster (2005) TCBL roll model &
Parameterization development
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Mostly fixed near-surface roll fluxes
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Z (km)

Roll-Induced Modification of the Mean Flow

Basic State Azimuthal Velocity: Cl: 5 ms ',
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Transfer of Super-Gradient
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Weakened near-surface
inflow near and inside RMW
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Non-local Momentum Flux
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(These plots are from various calculations)



Across-roll U(10 m) (m/s)
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New OLE theory correctly connects Are OLE dynamics
PBL OLEs with the Surface Layer and sea-surface
Perturbation

connected?




Plan

Improve and develop Foster (2005) roll theory
— Lower BC

— Interface with similarity mean TCBL model

— Improve scalar fluxes

Improve mean TCBL similarity model

— Re-do temperature implementation

— Water vapor

Analyze available SAR imagery (have large catalog including
ATL and WPAC, from HW & ITOP)

— Roll characteristics

— Conditions when present & not present
Collaborate with I. Ginis & K. Gao

— Contrast methodologies

— Work on paramterizations

— Test implementations






RALPH C. FOSTER ET AL.

u Conditionally-sampled ejection
Embedded in streak updraft

= 100 150 Boundary-Layer Meteorology
(2006) 120: 229-255
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PBL Rolls

« Organized Large Eddies
— Roughly parallel to the mean PBL wind
— Qverturning circ. (v-w) spans the depth of the PBL
— Much stronger along-roll (u) perturbation
— Aspect ratio ~2.4 to 6 (wavelength/depth)
« Very common

 Basic characteristics agree with most unstable normal mode
Instability
— Nonlinear strength ~5% to ~20% of mean flow
— Can be quite large in hurricane BLs

 Lateral phase velocity
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Non-Dimensionalize
and Scale Full Perturbation
Equations in Cylindrical
Coordinates
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Perturbation E" Scaling

Scaling for separable equations:
= |ocally Cartesian & Parallel
= plane wave solutions: o = (a,* + a%)
r = r,(constant)
dr = dx
r.dé=dy

Kee
Dro
Kee

0 R,tand rt terms
0 terms of (R.r,)™* or smaller

0 1.t terms only if multiply mean flow term

Squire’s transformation (e + 90°)



Rolls

 Form perturbation equations (U,,,=U +u, ...)

* Linearize, look for “fastest growing normal

mode”
— Do characteristics agree with observations?

 Perform nonlinear analysis of fastest growing
mode
— Seek equilibrium solutions

» Calculate finite magnitude
 Agree with Observations?



“Generic Hurricane” RMW =40 km, Vmax =40 m/s,B=1.3

20 60 100 140

Radius, km
AT,=0 -1 -3 -5



Re is the Vortex Boundary Layer Flow Parameter
(For any particular turbulence closure)
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For closures that match C,
Cp, controls Usfc/\Vg
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Across-Roll

Along-Roll

Typical
Normal Mode

Vertical

Temperature
OT Vectors
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Height (km)

Nonlocal Roll-flux doesn’t conform with standard gradient-flux modeling

Typical Roll-Stress Keff/KIocaI

0.5 .
“"ia.dia'h | « Negative K is unphysical
Z'fnUt 2 * “K different for Radial
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 Requires very large values
030 T ‘ ] and rapid changes
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01 L .................... _
0 i I I i i i
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“Kere - (needed to generate nonlocal flux)/K,,.y Based on Foster (2005)



oT _ az-Iocal,existing PBL param. n arnon—local
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Vv

Nonlocal Flux Forcing

6 T I o
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‘—Radial
5 5 i
4| |
N3t :

2r |

1 This calculation omits
surface effects (Mostly
Fixed in recent weeks)

0.4 0.6

d(t/p)o z '

 Conceptual model for non-local roll flux parameterization. Appears to be
simple to parameterize & incorporate into existing PBL parameterizations.
» Numerical models are approaching roll-scale resolution; simple averaging
(like this) may not suffice. However, neither will existing parameterizations.




— Pw’' 26%

Probabilities



Streaks

 Transient, near-surface features of nearly all
strongly-sheared BL flows

« Simplest theory:
— Explosive growth of non-modal perturbations
— Possible even when all normal modes are stable
— Can form in the presence of unstable normal modes
— Analogous to adjoint forecast sensitivity analysis

e Role In maintenance of surface stress




Boundary-Layer Meteorology
(2006) 120: 229-255
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Figure 2. Snapshot of horizontal cross-sections (x—y) of the turbulent longitudinal (or
streamwise) velocity u at z=9m (a), z=28m (b), z=47m (c) and z=153m (d). Negative u
appears in dark shading and positive « in light shading.



Note initial “lean into shear”
and rotation as it evolves

ORIGIN OF NEAR-SURFACE STREAKS 251

Figure 2. Contours of spatially-filtered u’ v" and w (first, second and third columns respectively) in a
vertical plane perpendicular to the 380 m wavelength streaks at times increasing downwards, 2784,
2912, 3056 and 3232 s respectively. Contour interval is 0.2 m s~!. The zero contour is omitted. The
maximum contour shown is +1 m s~ .

Boundary-Layer Meteorology 108: 247-256, 2003



114 R. C. Foster

Max: (.12, Norm: 1

Overturning
Streamfunction

Down-roll
velocity

Struciure of optimal Ekman laver perturbations

| i A7 S
- ' " Max: 7.51, Norm: 6.6

Max: (.26, Norm: 1

r FIGURE 8. Contours of the downstream velocity in the plane normal to the roll axis for the r = 15
optimal perturbation at (@) t = 0, (b} t = 5, (¢} ¢ = 15, and (d) ¢ = 25. The wavenumber if 1.700 and
the arientation angle is 29.5° frem the surface isobars. The contour interval is () 0.1, (#) 0.2, (¢) and
(d) 1. Solid contours are positive values and dashed contours are negative. The heavy solid lines mark
the zero contour.

Figure 7. Contours of the streamfunction in the plane normal to the roll axis for the 7 = 15 optimal
perturbation at (@) ¢ =0, (#) =135, (¢) ¢ == 15, and (d) r = 25. The wavenumber is 1.700 and the
orientation angle is 29.5° from the surface iscbars. The contour interval is 0.1 for all times, Solid
contours are positive values and dashed contours are negative. The heavy solid lines mark the zero

contour. =i | Tt R F
J, Fluid Mech, 11997, vof 333 pp. 97-123



- Explosive growth comes from non-orthogonal
Thisisaroll normal modes near branching of discrete spectrum
(dashed-contours, logarithmic intervals)

Structure of/optimal Elman layer perturbations 107

0.2- i 0.150- .
(a)
0,175 - _
0.} - i
B &
= i )
g_ - CONLY, E 2 pae- .
LA E*
4 e W) !
“a / ! e
I . ,’
e ® | 0.1654 :
i .. om| i
~1,1- = {0,160 L
1 1 1 1 1 1 ] 1 ] T 1 1 1 I 1
0.4 02 0 0l .04 0,02 0 001
Growth rate Growth rate

FiGURE 2. (a) Effect of resclution on the eigenvalues for the conditions « = 0.5, e = 20F, Re = 500,
neutrally stratified, barotropic and no tangential Coriolis foree for N, = 200 (squares}, 120
{trianzles) and 60 (circles). Filled symbols are discrete normal modes and hollow symbols are discrete
representations of elements on the continuous spectrum. (b) Expanded view near the conlinuous
spectrum, In both (g) and (¥ the predicted behaviour of the continuous spectrum is plotted as solid
lines. Contours of the e-pseudospectrum are plotted as dashed lines. In (@) the contours change by

factors of 10 from 1077 (inner) to 107* {outer). In (&) only the 107 and L0 contours are shown,



Short duration (transient):
small scale, close to sfc wind

R. C. Foster Longer duration:
Large scale, becomes rolls

Figuee 5, Contour plots of the maximum possible energy norm for Ke = 300 as a function of
wavenumber, =, and orientation angle, « for time intervals (a) + = 15; (M) r = 25;{c) 7 = 50; ()7 =

100, The contour interval 15 1 n () and (b); 2 m () and 5 m {d).
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RALPH C. FOSTER ET AL.

u Conditionally-sampled ejection
Embedded in streak updraft

= 100 150 Boundary-Layer Meteorology
(2006) 120: 229-255
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Summary

 Rolls are associated with nonlinearly equilibrated
normal modes

— Over long times, normal modes maximize difference between
growth and dissipation

— Nonlinear effects stabilize
— Modified mean flow & non-local fluxes

» Streaks are related to transient perturbations

— Continuous cycle of formation—> growth - decay -
reformation

— Can have larger separation between growth and dissipation
over short times

— Flux events (ejections/sweeps) form in streak up-/down-drafts
— Can co-exist with Rolls
— Can energize roll modes




