Using the scale-and aerosol-aware Grell- Freitas convective parameterization in FV3GFS at C768

Georg A. Grell, Haiqin Li, Keren Rosado, Mike Fiorino Additional ideas from DTC folks

Overview

- DA was not available on jet till late in the game, following results all without DA (cold start)
- Spare cycles were used for a detailed look at 2017 Atlantic and EPAC hurricane season (Keren Rosado)
- Started using DA on Theia in September
- Evaluation done using GFDL tracker (Mike Fiorino)
- Where to go next what is waiting to be tested in GF

Grell-Freitas Convective Param

- Scale-aware/Aerosol-aware (Grell and Freitas, 2014, ACP)
 - Allows CAPE, vertical velocity and moisture convergence closures
 - Scale awareness through Arakawa approach (2011)
 - Evaluated with MPAS (Fowler et al. 2016, GEOS-5 Freitas et al. 2018, BRAMS and WRF (ACP2014)

NOT USED

- Aerosol awareness is implemented with empirical assumptions based on a paper by Jiang and Feingold
- Stochastic approach adapted from the Grell-Devenyi (2002) scheme, but changed to include temporal and spatial perturbation patterns

Recent implementations into GF scheme that were used in these runs

- Momentum transport (as in GFS/SAS and/or ECMWF)
- Additional closure for deep convection: Diurnal cycle effect (Bechtold)
- PDF approach for normalized mass flux profiles was implemented
- Mixed phase physics impact in convective parameterization
- Third type of cloud (congestus type convection)
- Changed cloud water detrainment treatment
- Changed conversion of cloud-water to rainwater
- Impacts of memory (downdraft strength, vertical mass flux PDF's)

ESRL FV3 runs for HFIP

- 4 versions:
 - FV7E C768 + SAS (GFS)
 - FV7G C768 + GF
 - FV3E C384 + SAS (GFS)
 - FV3G C384 + GF
- FV3GFS physics, only convection parameterization was touched

EPAC 2018 00Z only -- %improve over GFS

WPAC (05-31W) 2018 00Z only -- %improve over GFS thru 20181023

ACC comparison for c768 resolution runs, no cycling

Ongoing work! – <u>by October both runs are</u> almost identical!!

2017 Hurricane evaluation experiments

- Evaluation of C768 (13km) resolution
 - Ongoing, East Pacific and Atlantic
 - Comparison with FV3GFS
 - All FV3 forecasts with GF started from GFS initial fields (cold start)
 - GFDL Microphysics used in FV3-GF runs

Model runs produced and evaluated by Keren Rosado

2017 Atlantic Hurricane Season (~13km resolution)

Many other diagnostics available

Track Error by Storm Severity

2017 EPAC Hurricane Season

Most important recent ongoing development work

- Consistency with microphysics
 - New implementation into GF is treatment of number density variables to be more consistent with double moment microphysics schemes (appears to have largest impact on cloud ice) – Hannah Barnes, PostDoc
- Impact of cold pool movements
- Momentum transport needs a look (tuning may be appropriate..)
- Isolating parameters that need to be retuned for different physics (FV3GFS versus RAP/HRRR versus HWRF)
- Retuning aerosol awareness
- Would like to test stochastics

Additional material

2017 EPAC Hurricane Season

