

BASIN-SCALE HWRF:

Evaluation of 2018 Real-Time Forecasts

Presented by

Ghassan Alaka^{1,2}

¹Cooperative Institute for Marine and Atmospheric Studies, University of Miami ²NOAA/AOML/Hurricane Research Division

Basin-Scale HWRF is a Team Effort!

HRD Team:

Xuejin Zhang^{1,2}, Jonathan Poterjoy³, Mu-Chieh Ko^{1,2}, Andrew Hazelton^{1,2}, Russell St. Fleur^{1,2},

Hui Christophersen^{1,2}, S. Gopalakrishnan², Frank Marks²

¹Cooperative Institute for Marine and Atmospheric Studies, University of Miami

²NOAA/AOML/Hurricane Research Division

³University of Maryland

Collaborators:

Avichal Mehra, Bin Liu, Zhan Zhang, Henry Winterbottom, Qingfu Liu (NCEP/EMC)
Evan Kalina, James Frimel, Evelyn Grell, Laurie Carson (DTC)
Andrew Penny (NHC)

The advancement & success of the Basin-Scale HWRF project is a reflection of excellent collaborations within NOAA that aim to reach a common goal.

THANK YOU VERY MUCH!

What is Basin-Scale HWRF?

An HFIP Real-Time Demonstration since 2013!

X. Zhang et a. (WAF, 2016)Alaka et al. (WAF, 2017)

Key differences:

Multiple high-resolution moving nests; Large outermost domain

New in 2018:

Ocean coupling (POM); Satellite data assimilation system

Basin-Scale HWRF in 2018

Two Basin-Scale HWRF projects supported for 2018 HFIP Real-Time Demos:

- "Traditional" Basin-Scale HWRF (HWRF-B; HB18)
 - Upgraded in lockstep with operational HWRF
 - Multi-storm paradigm
- Basin-Scale HWRF DA and Ensemble Prediction System (HWRF-C; HC18)
 - Satellite data assimilation on the outer domain
 - Probabilistic 7-day forecasts

Major Findings & Milestones

Scientific Findings

- HB18 had better intensity forecasts than
 H218 at longer lead times (> 72h)
- HB18 track errors consistent with H218
- HB18 performed well because most forecasts had multiple storms
- HB18 had lower forecast errors than H218 for Florence/Helene/Isaac forecasts
- **HC18** performed satellite DA for 6+ weeks & had no apparent model drift

Project-Oriented Milestones

- Ran HB18/HC18 4x daily in real-time for the HFIP demo on Jet
- Implemented POM coupling for HB18 (thx Biju)
- Relocation bug for storms near the edge of D01 in HB18 (thx EMC & DTC)
- Developed a Python/Rocoto workflow for HC18 (thx Jon P., Henry, & DTC)
- Developed single-nest capacity for HC18
 delivered to HWRF trunk
- Configured the GFDL Genesis tracker for HC18
- Delivered products to our web site in real-time for our collaborators (HFP, Map Discussion)

Project #1: HB18

- Dynamical core is identical to the 2018 operational HWRF (H218)
- Most configuration options were identica
 - All physics, vertical resolution,
 13.5/4.5/1.5 km horizontal resolution
- Key configuration differences
 - Outermost domain size*
 Covers NHC Area Of Responsibility
 - Multiple high-resolution nests*
 Up to 3 this year
 - Data assimilation
 No TDR DA ensemble
 - Ocean initialization
 RTOFS vs. NSST

Configuration Options	HB18	H218
Domain	13.5 km: 194.0° x 84.2° 4.5 km: 16.5° x 16.5° 1.5 km: 5.5° x 5.5°	13.5 km: 77.2° x 77.2° 4.5 km: 17.7° x 17.7° 1.5 km: 5.9° x 5.9°
Model Top	10 hPa	10 hPa
Vertical Levels	75	75
Vortex Init.	At 4.5/1.5 km	At 4.5/1.5 km
Data Assimilation	Hybrid DA	Hybrid DA & TDR Ensemble
Ocean Coupling	13.5 km: YES (POM) 4.5/1.5 km: Downscaled	13.5/4.5 km: YES (POM) 1.5 km: Downscaled
Multi-Storm	YES (up to 3)	NO
	PHYSICS SCHEMES	
Microphysics	Ferrier-Aligo	
Microphysics	remer-Ango	Ferrier-Aligo
Radiation (LW,SW)	RRTMG	Ferrier-Aligo RRTMG
. ,		
Radiation (LW,SW)	RRTMG	RRTMG
Radiation (LW,SW) Surface Layer	RRTMG HWRF (GFDL-based)	RRTMG HWRF (GFDL-based)
Radiation (LW,SW) Surface Layer PBL	RRTMG HWRF (GFDL-based) GFS Hybrid-EDMF	RRTMG HWRF (GFDL-based) GFS Hybrid-EDMF

Project #1: HB18

- Dynamical core is identical to the 2018 operational HWRF (H218)
- Most configuration options were identical
 - All physics, vertical resolution,
 13.5/4.5/1.5 km horizontal resolution
- Key configuration differences:
 - Outermost domain size*
 Covers NHC Area Of Responsibility
 - Multiple high-resolution nests*
 Up to 3 this year
 - Data assimilation
 No TDR DA ensemble
 - Ocean initialization
 RTOFS vs. NSST

A busy day in the tropics...

HB18 Verification: North Atlantic

H218 & HB18 were consistent

HB18 had better tracks than H218
52% of the time

HB18 better than H218 at longer lead times

HB18 had better intensities than H218
69% of the time

HB18 Verification: Northeast Pacific

HB18 & H218 were consistent for both track and intensity forecasts

HB18 Research: Multi-Storm Interactions

Project #2: HC18

- Same physics & outermost domain as HB18
- Data Assimilation System
 - 60 member EnKF
 - Satellite radiances
- Ensemble Prediction System
 - Up to 20 members for 7 days
 - Use DA analyses as initial conditions
 - Capacity for high-resolution nests
- ~2 million obs. processed per cycle
 - ~10% assimilated

No model drift
3D hurricane analysis
Physics evaluation

Basin-Scale HWRF Transition

Multiple moving nest paradigm is being transitioned into FV3

See X. Zhang's presentation from Day 1

The Milestones Sum It Up...

Scientific Findings

- 1. HB18 had better intensity forecasts than H218 at longer lead times (> 72h)
- 2. HB18 track errors consistent with H218
- **3. HB18** performed well in part because most forecasts had multiple storms
- HB18 had good Florence/Helene/Isaac forecasts
- 5. **HC18 had** no apparent model drift in 6+ weeks of cycling

Project-Oriented Milestones

- 6. Ran HB18/HC18 4x daily in real-time for the HFIP demo on Jet
- 7. Implemented POM coupling for **HB18** (thx Biju)
- 8. Relocation bug for storms near the edge of D01 in HB18 (thx EMC & DTC)
- 9. Developed a Python/Rocoto workflow for **HC18** (thx Jon P., Henry, & DTC)
- 10. Developed single-nest capacity for **HC18** → delivered to HWRF trunk
- 11. Configured the GFDL Genesis tracker for **HC18**
- 12. Delivered products to our web site in real-time for use from our collaborators (HFP, Map Discussion)

Extra Material

HB18 Verification

How did HB18 track errors compare with HWRF?

HB18 Verification

How did HB18 track errors compare with HWRF?

HB18 Verification

How did HB18 intensity errors compare with HWRF?

HC18 Configuration

Data Assimilation Step: Ensemble Forecast Step: A 6-h HWRF forecast runs from each EnKF updates HWRF ensemble members and radiance bias EnKF member using GFS surface and lateral boundary conditions. correction coefficients for next cycle. **Observations** Prior member 1 Post member 1 Prior member 1 Prior member 2 Prior member 2 Post member 2 **EnKF** Prior member 60 **HWRF** Post member 60 Prior member 60 Radiance bias Radiance bias Radiance bias correction coefficients correction coefficients correction coefficients

Genesis Tracker Output from HC18

Configured within the HC18 workflow to capture real & potential storms

A busy day in the tropics...

2018 HFIP Annual Review Meeting