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SOURCES OF ERROR IN FORECASTS
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SOURCES OF ERROR IN FORECASTS
Momentum and Enthalpy at High Winds
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Substantial range in observations (and estimates) for Cy, C,, and

ratio C,/Cy for given 10-m wind speed.



SOURCES OF ERROR IN FORECASTS

Cloud Microphysics Impact on Hurricane Track as Revealed in Idealized Experiments
Robert G. Fovell, Kristen L. Corbosiero, Hung-Chi Kuo
JAS, 66, 1764-1778.

Microphysical assumptions (fall speeds) strongly influence radial temperature gradients,
which influence winds at outer radius, influencing beta gyre and storm motion.
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Shallow Convection influence on AHW
TC Track

Ryan D. Torn and Christopher A. Davis, 2012: The Influence of Shallow
Convection on Tropical Cyclone Track Forecasts. MWR., 140, 2188-2197.

Structural errors in the processes that determine the tropical temperature

profile, such as shallow convection, can lead to biases in TC position.
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MULTI-MODEL ENSEMBLES

35N
On the ability of global
Ensemble Prediction Systems ECHwWF
to predict tropical cyclone
track probabilities

S. J. Majumdar and P. M.
Finocchio, 2014, MWR, 95,
1741-1751. SONA

Multi-model
ensembles often
outperform single
model ensembles.
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However, issues
persist, e.g.
clustering of forecast [EN
track by model.
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FIGURE 5. 5-day ECMWF, UKMET and NCEP ensemble forecasts for Hurricane

Gustav, imitialized at 00 UTC 28 August 2008. Each center’s forecast is represented by a

different font style, with the length of forecast depicted by the integer value.



Most Ensemble Prediction System include some
method to account for model uncertainty

Operational regional EPS
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HWRF accounts for model uncertainty through stochastic convective trigger in SAS and

stochastic boundary layer height perturbations in PBL.
GFDL accounts for model uncertainty through surface physics modifications.



Growing Interest in Accounting for Model Uncertainty
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Stochastic parametrisation improves probabilistic scores and
can reduce systematic errors. It does not (necessarily) reduce
the rms error of deterministic forecasts.

Primary headline metrics should measure the usefulness of
weather forecasts for real-world decision making. RMS
error/ACC of Z500 does not measure this; CRPSS does.

If RMS Error and Anomaly Correlation Coefficient remain the
primary headline metrics to evaluate an NWP Centre’s
performance, the development of parametrisations with
(e.g.stochastic) representations of their own uncertainty will
not be given first priority by model development teams.

Recommendations from EUMETNET Joint PHY-EPS Workshop 2013:
Introduce stochasticity only where appropriate (maintain physical meaning).
Sensitivity studies and process studies, in addition to predictability studies,
are necessary to understand impacts.

Parameter perturbations useful diagnostic to understand spatio-temporal
characteristics of uncertainty.



Parameterization of Moist Processes for Next-

Generation Weather Prediction

NOAA Center for Weather & Climate Prediction, College Park,
Maryland, January 27-29, 2015

It is natural to expect that model uncertainty could be estimated directly by
parameterizations and expressed by, for example, drawing the parameterization
tendency from a distribution of expected outcomes.

However, the parameterization community is not yet ready to provide

estimates of state-dependent parameterization error to replace current ad-hoc
estimates of model error to increase ensemble spread....

Nonetheless, ad hoc perturbations to physical tendencies remain the most
effective solution for maintaining the dispersion of ensembles through the
duration of a forecast.




STOCHASTIC PERTURBATIONS: IMPACT ON TCs

Lang, S. T. K., M. Leutbecher, and S. C. Jones, 2012: Impact of perturbation methods in the ECMWF
ensemble prediction system on tropical cyclone forecasts. QJRMS, 138., 2030-2046.
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Figure 13. Mean ensemble spread of (a) TC track and (b) central pressure of the different ensembles. The dashed black line indicates the mean track
error of the ALL50 ensemble-mean. The dashed grey lines indicate the 95% confidence interval for the difference between mean error and mean spread
of the ALL50 ensemble. Hence if the black line lies within the range indicated by the grey dashed lines, we consider the differences not to be statistically
significant. The numbers in parentheses indicate how many forecasts were considered for the respective lead time.

EDA has largest impact on TC track spread.

SKEB has biggest impact on central pressure spread at later times.
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Stochastic Convection: Impact on TC Genesis and Track

Snyder, A., Z. Pu and C. A. Reynolds, 2011: Impact of stochastic convection on ensemble forecasts of
tropical cyclone development. MWR, 139, 620-626.
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Inclusion of sub-grid scale processes improves probabilistic prediction of

TCs. Stochastic forcing improves prediction of TC genesis.



Sensitivity of TC Erin to Soil Moisture

Clark Evans, Russ S. Schumacher, and Thomas J. Galarneau Jr., 2011: Sensitivity in the Overland
Reintensification of Tropical Cyclone Erin (2007) to Near-Surface Soil Moisture
Characteristics. MWR, 139, 3848-3870.
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Sensitivity of TC Sinlaku LETKF to SST Perturbations

Masaru Kunii and Takemasa Miyoshi, 2012: Including Uncertainties of Sea Surface Temperature in an
Ensemble Kalman Filter: A Case Study of Typhoon Sinlaku (2008). Wea. Forecasting, 27, 1586—1597.
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SST perturbations within EnKF generally improve analyses and their

subsequent forecasts within the WRF system.
Suggests importance of coupled Air-Ocean DA and forecasts.




Parameter Variations: Impact on TC Tracks

Reynolds, C. A., J. A. Ridout, and J. G. McLay, 2011: Examination of parameter variations in the U. S. Navy
Global Ensemble. Tellus, 63A, 841-857.
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Small but significant improvements to TC track forecasts with inclusion of

parameter variations in convection and PBL schemes.



Summary and Discussion Points

There are substantial uncertainties in many of the model processes and forcing
that impact TC track and intensity (e.g., lateral and surface boundary forcing,
parameterizations, parameter values).

A well-designed ensemble should account for these model uncertainties.

— Different methods can be complementary, but they are not necessarily
Independent.

— How do we determine the characteristics of these model uncertainties?

(e.g., parameter estimation methods; Rios-Berrios et al. 2014)

Improvements in both deterministic and probabilistic verification are obtained
through inclusion of model uncertainty in ensemble design (e.g., multi-model
ensembles, parameter variations, stochastic forcing, lateral and surface

boundary forcing).

— Inclusion of model uncertainty can be costly (computationally and effort-
wise). When is it worthwhile?

— Metric is key (e.g., some forms of uncertainty impact ensemble
dispersion, not ensemble mean).
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Model Uncertainty in Convection Permitting EFSs

G. S. Romine, C.S. Schwartz, J.Berner, K.R. Fossell, C.Snyder, J.L. Anderson, and M. L. Weisman, 2014
Representing Forecast Error in a Convection-Permitting Ensemble System. MWR., 142, 4519-4541.
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- Attributes diagrams for ensemble forecasts initialized from
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NOAA HFIP Multi-Model Ensemble

HWRF EPS (27/9/3 km, 42 levels) — 21 members
GFDL EPS (55/18/6 km, 42 levels) — 10 members

COAMPS-TC EPS (27/9/3 km, 40 levels) — 11 members
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MAE (kt, solid), ME (kt, dashed)
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Combined ensemble mean has
accuracy similar to consensus of
three control members

In this 2011-2013 retro sample,
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Control forecasts:
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Ensemble mean requirements:
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MULTI-MODEL ENSEMBLES

Tropical Cyclone Track Forecasts Using an Ensemble of Dynamical Models
J. S. Goerss, MWR, 128, (2000) 1187-1193

Simple ensemble average (consensus) may be more accurate, on
average, than the forecasts of the inaividual models.

N GFDL NOGAPS UKMO | ENSM | CLIPER

24 h 250 142 152 152 120) 187
48 h 221 246 255 244 194 389
12 h 166 364 383 345 266 607

Table 2. Homogeneous comparison of the GFDL model, NOGAPS, UKMO, the ensemble average
(ENSM), and CLIPER TC position errors (km) for a sample of (N) forecasts of tropical storms and
hurricanes during the 1995-96 Atlantic hurricane seasons.
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MULTI-MODEL ENSEMBLES AND POSTPROCESSING

Real-Time Multimodel Superensemble Forecasts of

Atlantic Tropical Systems of 1999
C. Eric Williford, T. N. Krishnamurti, R. C. Torres,
Cocke, Z. Christidis, and T. S. Vijaya Kumatr,

S.
MWR,

simple linear multiple

131, 2003, 1878-1894
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Inducing TCs to undergo Brownian Motion

Daniel Hodyss, Justin G. McLay, Jon Moskaitis, and Efren A. Serra, 2014: Inducing Tropical Cyclones to
Undergo Brownian Motion: A Comparison between I1té and Stratonovich in a Numerical Weather
Prediction Model. MWR, 142, 1982-1996.
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Aqua-planet CAM4 and CAM5 TC Sensitivity to Resolution

Reed and Jablonowski, 2011: Assessing the Uncertainty in Tropical Cyclone Simulations in NCAR’s
Community Atmosphere Model. JAMES V3.
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No systematic difference in the
ensemble simulations when
comparing the initial-data and
parameter uncertainties.

The majority of the uncertainty
depends on two main factors: the
horizontal resolution and the
version of CAM.

Time evolution of the (top) minimum surface pressure and (bottom) maximum wind speed at 100 m of the control
case at the horizontal resolutions of 1.0° (red), 0.5° (green) and 0.25° (blue) with CAM 4 and CAM 5. Solid line
represents control case and dashed lines represent that the variance as determined by the ensemble RMSD.



STOCHASTIC PERTURBATIONS

Stochastic representation of model uncertainties in the ECMWF ensemble prediction system
QJRMS, 125, October 1999 Part B, 2887-2908, R. Buizza, M. Miller, T. N. Palmer

« Simulate model random errors associated with physical parameterizations
by multiplying total parameterized tendencies by random number between
0.5and 1.5

* Increases spread of ensemble

* Improves skill of probabilistic prediction of weather parameters such as
precipitation

x = (A, ¢, o) (identified by its latitude, longitude and vertical hybrid coordinate), the
perturbed parametrized tendency (of each state vector component) is defined as

Piej; )= (rj(x, ¢; ))p,TP;(e); 1), (6)

where (. . . ) p,7 means that the same random number r; has been used for all grid points
inside a D x D degree box and over T time steps. Random numbers have been sampled
uniformly from three different intervals for so-called high-, medium- and low-amplitude
stochastic forcing configurations:

* Recent refinements made to stochastic perturbations (Palmer et al 2009)



STOCHASTIC PERTURBATIONS: IMPACT ON TC INTENSITY

Ensemble prediction of tropical cyclones using targeted diabatic singular vectors
QJRMS, 127, January 2001 Part B, 709-731, K. Puri, J. Barkmeijer, T. N. Palmer
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Figure 4(c). As in Fig. 3(b) but for TC Zeb and ensemble prediction system run with no stochastic physics (top
left), with stochastic physics (top right), tropical singular vectors (SVs) (bottom left) and tropical SVs + stochastic
physics (bottom right).

Significant spread in tracks from moist-SV based initial perturbations.

Inclusion of stochastic physics leads to larger spread in the central pressures.
Higher model resolution (TL255) also lead to significantly increased pressure spread.




STOCHASTIC PERTURBATIONS: IMPACT ON TCs

Lang, S. T. K., M. Leutbecher, and S. C. Jones, 2012: Impact of perturbation methods in the ECMWF
ensemble prediction system on tropical cyclone forecasts. QJRMS., 138., 2030-2046.
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Figure 1. Mean perturbation total energy (integrated and area-weighted)
within a 20 x 20” box centred on the forecast positions of the TCs. The

scaling of the y-axis is logarithmic.

Different perturbation methods have very different impacts on TC track and

minimum SLP at early times, but converge after a few days.




HWRF Ensembles: Stochastic Convection Trigger Function

Z. Zhang, V. Tallapragada, C. Kieu, S. Trahan, and W. Wang, 2014: HWRF based ensemble prediction system
using perturbations from GEFS and stochastic convective trigger function. Tropical Cyclone Research
and Review, 3, 145-161.
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Most Ensemble Prediction System include some
method to account for model uncertainty
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Parameterization of Moist Processes for Next-

Generation Weather Prediction

NOAA Center for Weather & Climate Prediction, College Park,
Maryland, January 27-29, 2015

Probability distributions are useful in two distinct contexts: 1) for representing variability
at scales below or approaching the model resolution, and 2) to describe uncertainty and

improve spread-skill relationships in probabilistic ensemble forecasts. It is natural to
expect that model uncertainty could be estimated directly by parameterizations
and expressed by, for example, drawing the parameterization tendency from a
distribution of expected outcomes.

However, the parameterization community is not yet ready to provide
estimates of state-dependent parameterization error to replace current ad-hoc

estimates of model error to increase ensemble spread. Data assimilation,
sensitivity assessment, and parameter estimation are the most useful current approaches
for developing understanding of the response of model output to changes in parameters,
how this response maps onto the resolved scales, and how the local and grid scale
response changes with environment, flow, etc. Nonetheless, ad hoc perturbations to
physical tendencies remain the most effective solution for maintaining the

dispersion of ensembles through the duration of a forecast.




Axisymmetric Simplified Pseudoadiabatic Entropy
Conserving Hurricane (ASPECH) model.

Rosimar Rios-Berrios, Tomislava Vukicevic, and Brian Tang, 2014: Adopting Model Uncertainties for
Tropical Cyclone Intensity Prediction. MWR, 142, 72—-78.
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