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SOURCES OF ERROR IN FORECASTS
1) Analysis errors 

- Imperfect DA

- Imperfect/sparse obs

- Imperfect  model

2) Boundary condition errors

- Lateral boundary conditions

- Lower boundary conditions 
(coupled model uncertainty, e.g., 
land surface, waves, ocean, ice, 
etc.)

3) Model  errors

- Limited resolution

- Dynamic core

- Parameterization of physical 
processes

A stochastic parameterization for deep convection 
based on equilibrium statistics

R. S. Plant and G. C. Craig., JAS, 65 (2008), 87-105 

Wide range 
of 
convective 
states 
consistent 
with given 
resolved 
flow.  Wider 
range for 
smaller grid 
box.



SOURCES OF ERROR IN FORECASTS
Momentum and Enthalpy at High Winds

Substantial range in observations (and estimates) for CD, CK, and 
ratio CK/CD for given 10-m wind speed.

M. Bell Thesis Dissertation (2010)
Bell, Montgomery, Emanuel (2012)



SOURCES OF ERROR IN FORECASTS
Cloud Microphysics Impact on Hurricane Track as Revealed in Idealized Experiments

Robert G. Fovell, Kristen L. Corbosiero, Hung-Chi Kuo 
JAS, 66, 1764-1778.

Microphysical assumptions (fall speeds) strongly influence  radial temperature gradients, 
which influence winds at outer radius, influencing beta gyre and storm motion.



Ryan D. Torn and Christopher A. Davis, 2012: The Influence of Shallow 
Convection on Tropical Cyclone Track Forecasts. MWR., 140, 2188–2197.

Mean absolute error in (left) TC track in AHW forecasts that use the Kain–Fritsch (AHKF; solid) and 
Tiedtke (AHW4; dashed) cumulus convection on the outer two domains as a function of forecast 
hour, (right) The position bias as a function of forecast hour.

Structural errors in the processes that determine the tropical temperature 
profile, such as shallow convection, can lead to biases in TC position. 

Shallow Convection influence on AHW 
TC Track



On the ability of global 
Ensemble Prediction Systems 

to predict tropical cyclone 
track probabilities 

S. J. Majumdar and P. M. 
Finocchio, 2014, MWR, 95, 

1741-1751.

Multi-model 
ensembles often 

outperform single 
model ensembles.  
However, issues 

persist, e.g. 
clustering of forecast 

track by model.

MULTI-MODEL ENSEMBLES



Most Ensemble Prediction System include some 
method to account for model uncertainty

• HWRF accounts for model uncertainty through stochastic convective trigger in SAS and 
stochastic boundary layer height perturbations in PBL.

• GFDL accounts for model uncertainty through surface physics modifications.



Growing Interest in Accounting for Model Uncertainty

Recommendations from EUMETNET Joint PHY-EPS Workshop 2013:
• Introduce stochasticity only where appropriate (maintain physical meaning).
• Sensitivity studies and process studies, in addition to predictability studies, 

are necessary to understand impacts.
• Parameter perturbations useful diagnostic to understand spatio-temporal 

characteristics of uncertainty. 8

Strategic Goals for NWP Centres: Minimising RMS 
error or maximising forecast reliability, T. Palmer, U. 
Oxford, WWOSC, August 2014



Parameterization of Moist Processes for Next-
Generation Weather Prediction

NOAA Center for Weather & Climate Prediction, College Park, 
Maryland, January 27-29, 2015

It is natural to expect that model uncertainty could be estimated directly by 
parameterizations and expressed by, for example, drawing the parameterization 
tendency from a distribution of expected outcomes.

However, the parameterization community is not yet ready to provide 
estimates of state-dependent parameterization error to replace current ad-hoc 
estimates of model error to increase ensemble spread….

Nonetheless, ad hoc perturbations to physical tendencies remain the most 
effective solution for maintaining the dispersion of ensembles through the 
duration of a forecast. 



Lang, S. T. K., M. Leutbecher, and S. C. Jones, 2012: Impact of perturbation methods in the ECMWF 
ensemble prediction system on tropical cyclone forecasts. QJRMS, 138., 2030-2046.

EDA has largest impact on TC track spread.  
SKEB has biggest impact on central pressure spread at later times.

STOCHASTIC PERTURBATIONS: IMPACT ON TCs



Snyder, A., Z. Pu and C. A. Reynolds, 2011: Impact of stochastic convection on ensemble forecasts of 
tropical cyclone development.  MWR, 139, 620-626.

Inclusion of sub-grid scale processes improves probabilistic prediction of 
TCs. Stochastic forcing improves prediction of TC genesis. 

Stochastic Convection: Impact on TC Genesis and Track

21 Sept. 
66h before 
Tropical 
Depression

26 Sept. 
54h after TD

Observed track outside 
ensemble, no TD forecasts

Reasonable tracks, more 
spread, TDs. 

Small spread, few recurve More spread, recurvers

No Model Uncertainty Stochastic Forcing TC Jangmi 
Sept. 2008



Clark Evans, Russ S. Schumacher, and Thomas J. Galarneau Jr., 2011: Sensitivity in the Overland 
Reintensification of Tropical Cyclone Erin (2007) to Near-Surface Soil Moisture 

Characteristics. MWR, 139, 3848–3870.

WRF-ARW simulations of TC Erin 
redevelopment over land exhibit 
substantial intensity sensitivity 
to soil moisture.

Sensitivity of TC Erin to Soil Moisture

Track

Max 10-m 
Wind

Min SLP



Masaru Kunii and Takemasa Miyoshi, 2012: Including Uncertainties of Sea Surface Temperature in an 
Ensemble Kalman Filter: A Case Study of Typhoon Sinlaku (2008). Wea. Forecasting, 27, 1586–1597.

SST perturbations within EnKF generally improve analyses and their 
subsequent forecasts within the WRF system. 

Suggests importance of coupled Air-Ocean DA and forecasts.

Sensitivity of TC Sinlaku LETKF to SST Perturbations



Reynolds, C. A., J. A. Ridout, and J. G. McLay, 2011: Examination of parameter variations in the U. S. Navy 
Global Ensemble.  Tellus, 63A, 841-857.

Small but significant improvements to TC track forecasts with inclusion of 
parameter variations in convection and PBL schemes. 

Parameter Variations: Impact on TC Tracks

2007 Northern Hemisphere
Homogeneous TC Forecast Error (nm)



There are substantial uncertainties in many of the model processes and forcing 
that impact TC track and intensity (e.g., lateral and surface boundary forcing, 
parameterizations, parameter values).

A well-designed ensemble should account for these model uncertainties.

– Different methods can be complementary, but they are not necessarily 
independent.

– How do we determine the characteristics of these model uncertainties?

(e.g., parameter estimation methods; Rios-Berrios et al. 2014)

Improvements in both deterministic and probabilistic verification are obtained 
through inclusion of model uncertainty in ensemble design (e.g., multi-model 
ensembles, parameter variations, stochastic forcing, lateral and surface 
boundary forcing). 

– Inclusion of model uncertainty can be costly (computationally and effort-
wise). When is it worthwhile?

– Metric is key (e.g., some forms of uncertainty impact ensemble 
dispersion, not ensemble mean).

Summary and Discussion Points



EXTRA SLIDES



G. S. Romine, C.S. Schwartz, J.Berner, K.R. Fossell, C.Snyder, J.L. Anderson, and M. L. Weisman, 2014: 
Representing Forecast Error in a Convection-Permitting Ensemble System. MWR., 142, 4519–4541.

3-km WRF for CONUS precipitation:

Model Uncertainty in Convection Permitting EFSs

Attributes diagrams for ensemble forecasts initialized from 
25 May to 25 Jun 2012. Perfect reliability (diagonal line), 

observed frequency (solid black line from observed 
relative frequency axis), “no skill” relative to climatology 

(dashed line).

Rain-rate reliability improves with 
addition of perturbed lateral 

boundary conditions, SKEBS and 
SPPT.

Deterministic ensemble member 
forecast skill decreases when 

forecast perturbations are added, 
while ensemble mean forecasts 
remain similarly skillful to the 

control.

1 – 12h 18 – 36h



COAMPS-TC/HWRF/GFDL combined ensemble results(3)
HWRF EPS (27/9/3 km, 42 levels) – 21 members
GFDL EPS (55/18/6 km, 42 levels) – 10 members
COAMPS-TC EPS (27/9/3 km, 40 levels) – 11 members

NOAA HFIP Multi-Model Ensemble

Track error and 
spread well-
matched.

Intensity somewhat 
under-dispersive

Intensity somewhat 
under-dispersive

Larger 120-h track 
error (left) and larger 
72-h intensity error 
(right) associated 
with larger ensemble 
spread, on average

NRL Analysis
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COAMPS-TC/HWRF/GFDL combined ensemble results

For individual model, ensemble 
mean has improved accuracy 

relative to the control

Combined ensemble mean has 
accuracy similar to consensus of 

three control members

Ensemble mean requirements:
COAMPS-TC: 9 of 11 members
HWRF: 17 of 21 members
GFDL: 8 of 10 members
Combo: 34 of 42 members

Control forecasts:
COAMPS-TC: C00C
HWRF: HW00
GFDL: GP00
Combo :  Consensus of 

C00C, HW00, and GP00

Sample size 

Solid: Mean absolute error   Dashed: Mean error

(3) NOAA HFIP Multi-model Ensemble
NOAA Hurricane Forecast Improvement Program multi-model 

ensemble.HWRF EPS (27/9/3 km, 42 levels) – 21 members
GFDL EPS (55/18/6 km, 42 levels) – 10 members
COAMPS-TC EPS (27/9/3 km, 40 levels) – 11 members

In this 2011-2013 retro sample, 
combo control and ensemble mean 

outperform component models



Tropical Cyclone Track Forecasts Using an Ensemble of Dynamical Models
J. S. Goerss, MWR, 128,  (2000) 1187-1193 

Simple ensemble average (consensus) may be more accurate, on 
average, than the forecasts of the individual models.

MULTI-MODEL ENSEMBLES

Table 2. Homogeneous comparison of the GFDL model, NOGAPS, UKMO, the ensemble average 
(ENSM), and CLIPER TC position errors (km) for a sample of (N) forecasts of tropical storms and 

hurricanes during the 1995–96 Atlantic hurricane seasons.



2014 NUOPC TC Track Verification from Jiayi Peng and the EMC Ensemble Tem

Multi-model ensemble 
(2NAE) superior to 

either the GFS 
determinisitc (AVNO) or 
GFS ensemble (AEMN). 

However, multi-model 
ensembles do not 

necessarily out-perform 
best single-model 

ensemble if there are 
substantial differences 

in single-model 
ensemble skill.

MULTI-MODEL ENSEMBLES

NHC, EP01-21, 2014



Real-Time Multimodel Superensemble Forecasts of 
Atlantic Tropical Systems of 1999  

C. Eric Williford,  T. N. Krishnamurti,  R. C. Torres,  S. 
Cocke,  Z. Christidis, and T. S. Vijaya Kumar, MWR, 

131, 2003, 1878–1894 

Model biases of position and 
intensity errors of past 

forecasts summarized via 
simple linear multiple 

regression.

Errors for superensemble are 
generally less than those of all 

the participating models 
during 1-5 day real-time 

forecasts.

MULTI-MODEL ENSEMBLES AND POSTPROCESSING

Fig. 2. (a) The 1998 Atlantic tropical system cross-validation-
based track errors, hours 12–72, including FSU superensemble 

and ensemble mean forecasts; (b) the 1998 Atlantic tropical 
system cross-validation-based intensity errors, hours 12–72, 
including FSU superensemble and ensemble mean forecasts

Track

Intensity Average

Super Ens



Daniel Hodyss, Justin G. McLay, Jon Moskaitis, and Efren A. Serra, 2014: Inducing Tropical Cyclones to 
Undergo Brownian Motion: A Comparison between Itô and Stratonovich in a Numerical Weather 

Prediction Model. MWR, 142, 1982–1996. 

Inducing TCs to undergo Brownian Motion

Hurricane Isaac (2012)

Red - Itô Blue - Stratonovich

The intensity of the TCs 
are too strong from the 

Itô algorithm.

Black - Control

Ensemble TC distribution can be inflated using a 
stochastic phase speed parameterization. The stochastic 
parameterization must be implemented properly (blue) to 

get the correct solution.



Reed and Jablonowski, 2011: Assessing the Uncertainty in Tropical Cyclone Simulations in NCAR’s 
Community Atmosphere Model. JAMES V3. 

No systematic difference in the 
ensemble simulations when 

comparing the initial-data and 
parameter uncertainties. 

The majority of the uncertainty 
depends on two main factors: the 

horizontal resolution and the 
version of CAM.

Aqua-planet CAM4 and CAM5 TC Sensitivity to Resolution

Time evolution of the (top) minimum surface pressure and (bottom) maximum wind speed at 100 m of the control 
case at the horizontal resolutions of 1.0° (red), 0.5° (green) and 0.25° (blue) with CAM 4 and CAM 5. Solid line 
represents control case and dashed lines represent that the variance as determined by the ensemble RMSD.



Stochastic representation of model uncertainties in the ECMWF ensemble prediction system
QJRMS,125, October 1999 Part B, 2887-2908, R. Buizza, M. Miller, T. N. Palmer

• Simulate model random errors associated with physical parameterizations 
by multiplying total parameterized tendencies by random number between 
0.5 and 1.5

• Increases spread of ensemble

• Improves skill of probabilistic prediction of weather parameters such as 
precipitation

STOCHASTIC PERTURBATIONS

• Recent refinements made to stochastic perturbations (Palmer et al 2009)



Ensemble prediction of tropical cyclones using targeted diabatic singular vectors
QJRMS, 127, January 2001 Part B, 709-731, K. Puri, J. Barkmeijer, T. N. Palmer

• Significant spread in tracks from moist-SV based initial perturbations.
• Inclusion of stochastic physics leads to larger spread in the central pressures.
• Higher model resolution (TL255) also lead to significantly increased pressure spread.

STOCHASTIC PERTURBATIONS: IMPACT ON TC INTENSITY
M

S
LP

Control Stoc  Phy

Trop SV
Trop SV + 
Stoc Phy



Lang, S. T. K., M. Leutbecher, and S. C. Jones, 2012: Impact of perturbation methods in the ECMWF 
ensemble prediction system on tropical cyclone forecasts. QJRMS., 138., 2030-2046.

Different perturbation methods have very different impacts on TC track and 
minimum SLP at early times, but converge after a few days.

STOCHASTIC PERTURBATIONS: IMPACT ON TCs



Z. Zhang, V. Tallapragada, C. Kieu, S. Trahan, and W. Wang, 2014: HWRF based ensemble prediction system 
using perturbations from GEFS and stochastic convective trigger function.  Tropical Cyclone Research 

and Review, 3, 145-161.

HWRF ensemble 
mean with 
stochastic 

convective trigger 
function and GEFS 

perturbations 
outperforms 

deterministic HWRF.

HWRF Ensembles: Stochastic Convection Trigger Function



Most Ensemble Prediction System include some 
method to account for model uncertainty

Ishida and Reynolds WGNE ensemble report, March 2015



Parameterization of Moist Processes for Next-
Generation Weather Prediction

NOAA Center for Weather & Climate Prediction, College Park, 
Maryland, January 27-29, 2015

Probability distributions are useful in two distinct contexts: 1) for representing variability 
at scales below or approaching the model resolution, and 2) to describe uncertainty and 
improve spread-skill relationships in probabilistic ensemble forecasts. It is natural to 
expect that model uncertainty could be estimated directly by parameterizations 
and expressed by, for example, drawing the parameterization tendency from a 
distribution of expected outcomes.

However, the parameterization community is not yet ready to provide 
estimates of state-dependent parameterization error to replace current ad-hoc 
estimates of model error to increase ensemble spread. Data assimilation, 
sensitivity assessment, and parameter estimation are the most useful current approaches 
for developing understanding of the response of model output to changes in parameters, 
how this response maps onto the resolved scales, and how the local and grid scale 
response changes with environment, flow, etc. Nonetheless, ad hoc perturbations to 
physical tendencies remain the most effective solution for maintaining the 
dispersion of ensembles through the duration of a forecast. 



Rosimar Rios-Berrios, Tomislava Vukicevic, and Brian Tang, 2014: Adopting Model Uncertainties for 
Tropical Cyclone Intensity Prediction. MWR, 142, 72–78.

Results support need to use an 
ensemble of model parameterizations 

for TC intensity prediction. 

Results also indicate that the 
ensemble should be based on the 

optimal estimation in order to include 
realistic ranges and mutually 

dependent parameter perturbations 
between different processes.

Posterior Joint PDF estimates of enthalpy exchange 
coefficient and latent heat of vaporization:

Poor results based 
on Vmax only

Good results based 
on radial, 
tangential, and 
vertical wind within 
150-km radius, 
surface to 18-km.

Axisymmetric Simplified Pseudoadiabatic Entropy 
Conserving Hurricane (ASPECH) model.
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