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Motivation & Goal
 Numerical weather prediction is limited by errors in initial 

conditions, model imperfections, and nonlinearity.
 Ensembles of an NWP model provide forecast probability 

density functions (PDFs), useful for guidance
 Limited computer resources may require sacrifice in 

resolution

 We investigate a way to generate PDFs from a single 
deterministic run
 the HWRF NWP model to exploit its high resolution
 Using the analog ensemble technique (Delle Monache et al. 

2013), one can obtain forecast uncertainty from HWRF



The Analog Ensemble (AnEn)
Delle Monache et al. (2013; Mon. Wea. Rev.)

 The analog ensemble (AnEn) estimates the PDF of an observed 
future value of the predictand variable (here, TC intensity) given an 
individual numerical weather prediction (NWP) model forecast.

where, at a given time and location, y is the unknown observed 
future value of TC intensity and                             are the k 
predictors from the deterministic model forecast at the same time. 
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 The quality of an analog (i.e., closeness of a match) is 
determined with the following metric

 Ft is the current HWRF forecast valid at the future time t
 At’ is an analog (a past HWRF forecast from the archive) with 

the same forecast lead time but valid at a past time t’
 Nv and wi are the number of predictors and their weights
 σfi is the standard deviation of the time series of past forecasts 

of a given predictor for the forecast lead time
 is equal to half the number of additional times over which the 

metric is computed
 Fi,t+j and Ai,t’+j are the values of the forecast and the analog in 

the time window 2 .

The Analog Ensemble



 = 1 in our case (3 hourly given HWRF dataset).
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Features of the AnEn
 Can use a higher resolution model for an ensemble 

prediction (since only one real-time forecast is needed for 
AnEn)

 No need for initial conditions and model perturbation 
strategies to generate an ensemble

 Flow-dependent error characteristics can be determined

 The AnEn is well-suited for improving the prediction of 
rare events since it searches for a small set of best 
analogs.
 This may improve HWRF prediction of rapid intensification 

(RI) forecasts.



HWRF training data
 H214 is used on 2008-2013 reforecast data (Atlantic and 

eastern Pacific).
 3-km nest (7.1 x 7.1o) and 9-km nest (12 x 12o) within 27 km 

outer grid. 
 NMM dynamic core
 Vortex initialization package + GSI data assimilation
 Princeton Ocean model.
 Simplified Arakawa Schubert with shallow convection 

cumulus scheme on outer domains
 Ferrier for tropics microphysics
 GFS PBL parameterization
 GFDL surface layer, land-surface model and radiation 

schemes.



Available HWRF Forecasts
 2023 HWRF runs, with 0 – 126 h lead-times (at 3 h 

increments) [77 tropical cyclones]
 2008: Storm nos. 2 – 9, 11, 15, 17 
 11 storms: 3 TS, 2 cat 1, 1 cat 2, 2 cat 3, 3 cat 4

 2009: Storm nos. 3, 5, 6, 11 
 4 storms: 2 TS, 1 cat 2, 1 cat 4

 2010: Storm nos. 4, 6 – 8, 10 – 16
 11 storms: 5 TS, 1 cat 1, 1 cat 3, 4 cat 4

 2011: Storm nos. 1 – 18 
 18 storms: 1 TD, 11 TS, 2 cat 1, 1 cat 2, 1 cat 3, 2 cat 4

 2012: Storm nos. 1 – 19 
 19 storms: 9 TS, 6 cat 1, 3 cat 2, 1 cat 3

 2013: Storm nos. 1 – 14 
 14 storms: 1 TD, 11 TS, 2 cat 1



HWRF training data

 H214 predicted VMAX
 Maximum value at forecast time.

HWRF initial analysis tangential wind (m s-1) for Hurricane Earl on 06 UTC 2 Sept 2010 



Available Observations

 77 tropical cyclones in the Atlantic are matched with 
H214 retrospective runs
 2008 – 2013
 Best track maximum wind speed (VMAX) interpolated to 

3-hourly increments to match HWRF.



Tested Predictors
 A variety of environmental and storm-related 

predictors are explored. 
 Thermodynamic (environment*): 
 SST, 
 TPW, 
 RH, 
 CAPE (inner-core and rainband region), 
 MPI, 
 large-scale temperature gradient

*Note, environmental parameters are obviously influenced by the storm as well.



Tested Predictors
 A variety of environmental and storm-related 

predictors are explored.
 Kinematic (environment*): 
 850-200-hPa vertical wind shear, 
 storm motion vector, 
 200-hPa divergence

*Note, environmental parameters are obviously influenced by the storm as well.



Tested Predictors

 A variety of environmental and storm-related 
predictors are explored.
 Storm-specific: 
 Turbulent surface latent & sensible heat fluxes,
 integrated kinetic energy at 850 hPa, 
 850-500-hPa latent heating rate (inner-core & rainband 

regions), 
850-500-hPa inertial stability (inner-core & rainband 
regions) (i.e.,                    ),

 a variety of storm structure and symmetry parameters. For 
example, 



Verification Period

 626 runs, from Aug 2012 – Dec. 2013, forecast lead 
time from 0 – 126 h

 Predictions: VMAX



Optimal Predictors
 Maximum wind speed and 51 of the aforementioned 

predictors are used for preliminary tests of AnEn
predictions of VMAX. 

 Optimal weights (wi) of the 51 predictors is defined by 
choosing the combination minimizing MAE over 2/3 of the 
Atlantic dataset (not used for the validation.

 All possible combinations defined with the constraint
, where wi ∈ [0 1] are considered.

 Weight values greater than 0 result in only 3 predictors:
Maximum predicted wind speed, inner-core (850-500 hPa) inertial stability, and 
estimated storm motion direction with weights of 0.4, 0.3, and 0.3.

 20 ensemble members are used.



Maximum Absolute Error (MAE)



Centered Root Mean Square Error and Bias



Case Studies
Hurricane Leslie 
(2012)



Case Studies
Hurricane Kirk
(2012)



Summary of ATL 2014 HWRF Results

 AnEn (VMAX predictor only) and the optimally 
weighted predictor-enhanced AnEn improve the MAE 
of HWRF by 6.2% and 7.7%, respectively.
 Excels in reducing bias of forecast
 Provides an ensemble spread forecast

 Examples show AnEn is particularly useful in the first 
48 h, with statistically significant differences in MAE 
between the HWRF and AnEn.



Ongoing Efforts

 We acquired 2015 reforecast data from HWRF.
 Unfortunately, there were only 1110 forecasts available 

for the Atlantic (compare to 2023 forecasts from the 
2014 version of HWRF)

 There are 1316 forecasts available for the Eastern 
Pacific

 Reforecast data are from 2011 – 2014.



Ongoing Efforts
 The 2015 HWRF grib2 files no longer contain latent 

heating, which reduced the previous predictor set 
considerably.

 New predictors have been added for each of the 
following regions (r = 0 – 50, 0 – 100, 100 – 250 km):

 Average 700-hPa total condensate  (10 g kg-1) 
 Average 850-500 hPa total condensate  (10 g kg-1) (+ symmetry predictor)
 Average 850-500 hPa upward motion (Pa s-1) 
 Radial flow @ surface (m s-1) 
 850-500 hPa vertical motion symmetry parameter (10%) 
 Surface Radial flow symmetry parameter (10%)
 850-500 hPa inert. stab. + pos. vert. mot. coupling parameter (10-4 Pa s-

3) (+ symmetry predictor)

 NHC official VMAX  forecast



Eastern Pacific results (2015 HWRF)

671 runs for testing (~1/2 runs)
starting after 8/8/2013

3 predictors:
• Maximum predicted wind speed, 
• Inner-core inertial stability, and 
• 500-250-hPa RH
(Weights of 0.6, 0.3, and 0.1)
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Eastern Pacific results (2015 HWRF)
3 predictors:

• Maximum predicted wind speed, 
• Inner-core inertial stability, and 
• 500-250-hPa RH
(Weights of 0.6, 0.3, and 0.1)

671 runs for testing (~1/2 runs)
starting after 8/8/2013



Eastern Pacific results (2015 HWRF)

(Dispersion diagram – spread/skill)



Ongoing Efforts
 We are now using high resolution HTCF (∆ t ~25.7 s). This can provide smoother VMAX.

EPAC Adrian (2011)

EPAC Jova (2011)

Black: Hi-res VMAX
Orange: Smoothed 
Blue: 3-h HWRF GRIB2

derived data 



Next Steps

 Complete / Evaluate AnEn models for 2015 HWRF 

 Real-time testing
 Adapt 2015 version of algorithm for NCEP-ready 

operations
 2015 version test in real-time for 2016 season



Extra Slides



Correlation



Centered Root Mean Square Error and Bias

where

is the average of the K analog VMAX ensemble members for time t

is the time average of VMAX observations

is the time average of analog VMAX ensemble members



Proof of Concept
Dispersion

 Delle Monache et al. (2013) tested the AnEn on 10-m AGL wind speeds and 2-m AGL 
temperatures at 550 aviation routine weather-reporting stations collected over a 457-day 
period (verification period was the final 100 days). Canadian GEM is basis. Compared 
against REPS.

42-h binned spread-skill (10-m wind)

Dispersion diagram for probabilistic prediction of 10-m wind speed

-> AnEn able to 
capture flow-dependent
forecast uncertainty since
the AnEn spread reflects 
forecast error variance



Proof of Concept
Reliability

 Delle Monache et al. (2013) tested the AnEn on 10-m AGL wind speeds and 2-m AGL 
temperatures at 550 aviation routine weather-reporting stations collected over a 457-day 
period (verification period was the final 100 days). Canadian GEM is basis. Compared 
against REPS.Reliability for probabilistic prediction of 10-m wind speed exceeding 5 m s-1 at 9 h lead time



Proof of Concept
Discrimination

 Delle Monache et al. (2013) tested the AnEn on 10-m AGL wind speeds and 2-m AGL 
temperatures at 550 aviation routine weather-reporting stations collected over a 457-day 
period (verification period was the final 100 days). Canadian GEM is basis. Compared 
against REPS.

Relative operating characterstic skill score for probabilistic prediction of 10-m wind speed exceeding 5 and 10 m s-1
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