

Performance and Verification of HWRF Ensemble Prediction System in 2016 Real time Parallel Experiment

Zhan Zhang

and Hurricane Team

Environmental Modeling Center, NOAA/NWS/NCEP, NCWCP, College Park, MD 20740

HFIP Annual Review Meeting, January 11, 2016

Background

- > Two jet real time reservations;
- > HWRF EPS real time parallel for one AL storm;
- Multi-Model Combined Ensemble Prediction;
- ➤ 80-member HWRF EPS for SHOUT, intensity change guidance for Global Hawk.

2016 HWRF ensemble Configuration

- Use 2016 operational deterministic HWRF model except for
 - Less horizontal resolution: 27/9/3km vs. 18/6/2km
 - Less vertical resolution: L43 vs. L61;
 - No GSI due to lack of GDAS data;
- ➤IC/BC Perturbations (large scale): 20 member GEFS.
- ➤ Model Physics Perturbations (vortex scale):
 - Stochastic Convective Trigger Perturbations in SAS:
 -50hPa to + 50hPa white noise;
 - Stochastic boundary layer height perturbations in PBL scheme, -20% to +20%;
 - Stochastic Cd perturbation;
 - Stochastic initial wind speed and position (TCVital) perturbations considering best track uncertainty.

Difference from 2015 HWRFES:

- 1. Larger D02 and D03;
- 2. Scale-aware convection scheme turned on for all domains.

(Degrees/ Sec)	18 km	6 km	2 km
2015	75 x 75	12 x 12	6.5 x 7
HWRF	38 4/7	12 6/7	4 2/7
2016	75 x 75	25 x 25	8.3 x8.3
HWRF	30	10	3 1/3

Verification: HWRF-EPS vs Deterministic HWRF at AL

HWRF FORECAST - MINIMUM CENTER PRESSURE ERROR (hPa) STATISTICS VERIFICATION FOR NATL BASIN 2016

HWRF FORECAST — BIAS ERROR (KT) STATISTICS VERIFICATION FOR NATL BASIN 2016

Verification: HWRF-EPS vs Deterministic HWRF at WP

HWRF FORECAST — MINIMUM CENTER PRESSURE ERROR (hPa) STATISTICS VERIFICATION FOR WPAC BASIN 2016

HWRF FORECAST — BIAS ERROR (KT) STATISTICS VERIFICATION FOR NATL BASIN 2016

Verification: Multi-Model EPS

Verification: Individual Members vs Ensemble mean

- 1. HWRF EPS outperforms both the operational HWRF and its control (HW00) in terms of track and intensity;
- 2. HWRF ensemble mean has the smallest forecast errors compared to its individual ensemble members.

Forecast Error vs Ensemble Spread

Future Plan for HWRF based Ensemble Prediction System

- Improve representation of HWRF model error in EPS
 - Improve perturbations in scale-aware convection scheme
 - Evaluating Methods of Parameterizing Model Error in the HWRF Ensemble Prediction (Ryan Torn)
 - Characteristics of Hurricane Intensity Error Growth and Predictability Limit in the HWRF Model (Chanh Kieu)
- ➤ Improve representation of initial uncertainties, including initial SST uncertainties in HWRF EPS
- ➤ Develop more post-processed deterministic products: including medium value of track/intensity, select best member to represent EPS;
- ➤ Develop more probabilistic products, visualization of model variable uncertainty fields
- Continue HWRF EPS real time demo distribute the track/intensity forecast in a-deck file;
- Combined HWRF/GFDL/COAMPS-TC multi ensemble system in 2017
- Run 10 member HWRF-based EPS operationally in 2018