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STATUS REPORT: track & intensity verification (2012)

2012 ATLANTIC HURRICANE SEASON TRACK ERROR (nm)
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2012 ATLANTIC HURRICANE SEASON INTENSITY ERROR (knots)
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Special Thanks to
Stanley Goldenberg - (HRD/AOML)




Intensity Forecast Errors
& Skill (2012) Stratified by
Initial Storm Intensity

ABSOLUTE INTENSITY ERRORS
Effect of Stratification for Initial Storm Intensity
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Intensity Forecast Errors &
Skill (2012) Stratified by
Initial Vertical Shear

ABSOLUTE INTENSITY ERRORS
Effect of Stratification for Initial 200-850mb Vz

11

—HWRF
10 ||—=-GFDL

S _(I:;I‘\II:V[EQLF |Vz|<15 kts

ALL

(o]
\

m—H\WRF >4 |
——=GFDL IVz|215 kts

Intensity Errors (m/s)

2012 (A-T)

4

12 24 36 48 60 72 84 96 108 120
(392)(356)(318)(278)(247) (218) (194) (170) (145)(125)
(190) (55)
(202) (70)

All Cases / |Vz|<15 kts / |Vz|215 kts

5



Two Major_ L_and-fallmg
. ever !: -‘:'j.g ' |



For Track: Operational Models (HWRF & GFDL) Still

Performed Best Overall for Both Storms

AHW and COAMPS-TC Performed very well for Sandy but not for Isaac
Still GFS the Best Performing Model for Both Storms

(GFDL Ensemble Mean a Close Second)

HURRICANES ISAAC AND SANDY TRACK ERROR (nm)
Number of Cases: (42, 41, 37, 35, 29, 22, 15)
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Combined Intensity stats for Isaac and Sandy

HURRICANES ISAAC AND SANDY INTENSITY ERROR (knots)
Number of Cases: (42, 41, 37, 35, 29, 22, 15)
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Operational models outperformed other dynamical models
for land falling storms this year. (GFDL Ensemble Mean

even better). 8



AHW Sandy Results
Comparable to GFDL at 3-5 days

4 km Ensemble Forecasts
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Radar Reflectivity (DBZ) of 36h, walid at 1200 UTC 27 AUG 2011
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COAMPS-TC Development
2012 Testing and Evaluation

* Analysis and Initialization:
*New satellite obs.

*TC Dynamic Initialization
(tested in paraliel)

Intensity Error (kt)
Control Control

New Microphysics
New PBL
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* Other Capabilities: Lead tme (h)
*New nest tracker

*New diagnostics (including high-frequency output) 11



Case Study: 08W (2011) Ma-On

Intensity: Days Relative to 2011071018 Intensity: Days Relative to 2011071018
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Significant intensity error reductions for Ma-On by using TCDI/DI




COAMPS-TC Microphysics Tests

Comparison of Control and Thompson Microphysics
SLP Intensity Error (hPa): 15 Storms

Minimum slp error, NHC criteria
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COAMPS-TC

Summary
»Promising Intensity Skill:

«COAMPS-TC intensity forecasts verified well in 2010-12 in WATL & WPAC
«Improved (in 2012) data assimilation, physics (TC PBL, microphysics)

- 10-20% improvement in intensity, ~10% improvement in track
* Advancements to the ensemble (EnKF) and coupled capabilities

»Outstanding Issues:

*Intensity: i) Rapid intensification; ii) Weak storms

*Regional model track skill lags best GCMs

*\Vortex initialization, multi-scale DA, physics (PBL and microphysics)

»Future Plans:
*Transition COAMPS-TC to Navy operations (Ops. Testing underway)
*Advance further COAMPS-TC physics components for 2013

- consider advanced NRL or Thompson microphysics

- testing Tiedke cumulus, SAS shallow convection, new PBL mixing
*Coupled air-sea COAMPS-TC (with NCOM) will be run in real time in 2013
*Dynamical initialization will be run in real time in 2013

*EnKF, radar DA, and 4D-Var development underway
14






2.2.2 (EMC)
TDR assimilation

Impact of TDR data assimilation
to hurricane intensity forecast

Intensity (Max. 10m Winds, kts)
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2.1.1 (EMC)
Western Pac.

HWRF FORECAST — TRACK ERROR (NM) STATISTICS 0)
VERIFICATION FOR OPER HWRF FOR WP-—basin 2012
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HWRF track errors better than
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HWRF intensity errors comparable to
COAMPS-TC and GFDN

GFDN and COAMPS-TC use
NOGAPS while HWRF uses GFS for
IC & BC 17



2.5.1 (EMC, UCLA)
PHYS radiation

Sensitivity tests on radiation schemes in HWRF
|dealized vortex simulation

GFDL radiation RRTMG radiation

00Z11JUN2002 UTC time 00Z11JUN2002 UTC time
. 0

More realistic cloud-radiation
interaction in RRTMG
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Meso-SAS Scheme

« QOperational SAS scheme is not designed for high-
resolution models.

Basic assumption: updraft area is ver% small compared to
the model grid size. This assumption begins to break
down when the grid sizes become less than 10 km.

« At 0.5-10km model resolution, the use of the explicit
microphysics scheme is still problematic since the vertical
motion may not be large enough to smoothly create moist
adiabat for the entire grid point. This can and do lead to
the so-called grid-point storm, which has small size and
strong intensity

* Hua-Lu has re-derived Arakawa-Schubert (1974) scheme
by removing the assumption that the updraft area be
small, and make it possible to form the meso-SAS
scheme which can be used in high resolution models.
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MESO SAS (Results)

VERIFICATION FOR OPER HWRF FOR AL—basin 2010-2012 VERIFICATION FOR OPER HWRF FOR AL—basin 2010-2012
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2.5.1(HRD, EMC)
Surface P!;IYS

Using HRD’s aircraft observations to improve

hurricane model surface layer physics
(Gopalakrlshnan et al. 2012 JAS)

Direct flux observation
| based estimates of Cd
-4 and Ck from HRD’s

1 CBLAST field program:
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Using HRD’s Aircraft observations to improve the PBL physics in HWRF

2.5.1 (HRD)
PBL PHYS

Hugo (1989) flight
Marks et al. (2008),,,}

Flight-level data
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Using HRD’s aircraft observations to improve and validate model physics

Z(km)

Surface inflow angle [°]

10

Original Km in HWRF
(Gopalakrishnan et al. 21(312)
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2.7.1 (ESRL, EMC, HRD)
MYJ PBL PHYS

MYJ PBL vs GFS PBL (2012 ATL)

HWRF FORECAST — TRACK ERROR (NM) STATISTICS
VERIFICATION FOR OPER HWRF FOR AL—basin 2012
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Real-Time HWRF runs with MYJ PBL + GFDL Surface Physics for
2012 season did not show positive impacts.
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Advancements to Operational HWRF — Basin Scale
Configuration with multiple moveable nests

Isaac-lleana-Kirk real-time forecast

HWRF Basin-Scale 27:09:03km -
ISAACOSL -'KIR L ILEA
FORECAST H Q«QOO (DA




Basin Scale Multi-domain HWRF performance (2012)

Track error (Atlantic AL09-19) Track error (East Pacific EP09-17)
—&@— GFDL: GFDL fsct. —@— GFDL: GFDL fsct.
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Improved track forecast skill from Basin-Scale HWRF
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ECMWF based GFDL and HWRF Real Time Parallel System
(requested by NHC for the stream 1.5 parallel)

Configuration:
» Pre-process ECMWEF data, convert to readable format for both HWRF and
GFDL;
» Initialized at 00Z and 12h, forecast up to 132h;
» Experiment period: August 1, 2012 onwards.
Input:
» Initial Condition

1. ECMWEF:T1279 L91 vs. GFS: T574 L64;

2. Noinitialization;
»Boundary Condition

ECMWEF: T319 L91 vs. GFS: T574 L64.

Experiments:
HWEFE: Operational HWRF model using ECMWF data for IC and BC
GFDE: Operational GFDL model using ECMWF data for IC and BC
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2.5.1 (EMC)

Track Errors (NM)
— All 2012 Atlantic Storms

Average Intensity Errors (kt)
Statistics Plots — All 2012 Atlantic Storms
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GFDL ENSEMBLE MEAN SHOWED SIGNIFICANT INTENSITY

SKILL COMPARED TO OPERATIONAL PRODUCTS
REDUCED IMPACT OF OUTLIERS WITH LARGE ERRORS

PROMISING TECHNIQUE FOR REDUCING INTENSITY ERRORS FROM
REGIONAL MODELS

ATLANTIC INTENSITY ERROR WITH ENSEMBLES (knots)

Number of Cases: (368, 329, 289, 260, 204, 154, 119)
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GFDL Model Regional Ensemble System Identifies
Impact of Moisture Initialization and Emphasis on
Better Moisture Observations

The GFDL ENSEMBLE PRODUCT ALSO SHOWED HUGE SPREAD IN INTENSITY.
LARGEST IMPACT WAS WITH IDECREASE OF INNER-CORE MOISTURE BY 10%

(PERTURBATION MAXIMUM AT STORM CENTER)

GFDL Ensemble Forecast for ERNESTOO5SL: Maximum Wind
Initial time; 00Z04AUG2012

- CAT4

- CAT3
- CATZ

- CAT1

iE

[I)[D% diss) 2'4 (0% diss) 4I8 (0% diss) 7I? (0% diss) 96 (0% diss) 1&0 (0% diss) 31



University of Wisconsin
2012 HFIP Modeling Effort

S22

William E Lewis
Gregory J Tripoli
Zachary Gruskin
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2012 Stream 2.0 Highlights

2012 Atlantic Basin Intensity Errors*
» Best performance from member HWRF  GFDL UWN8  UW4A

(UW4A) most closely related to
stream 1.5 counterpart (i.e. Andreas ¢ |
sea spray) :

Track error essentially unchanged, but E ] Py
noticeable improvement beyond 72 hr RS = T
for intensity. (*fusing TCMT a-decks) 1

0 T T T T v T T T ¥

0 12 24 36 48 60 72 84 96 108 120

#CASE 357 333 300 266 238 209 186 160 142 123 107
Forecast lead time (hr)

3-D total vorticity isosurface

* idealized simulations
reveal potential
interaction b/w PBL
rolls and vortical
eyewall structures
seen in observations.
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UWNS8: Outstanding Issues

Resolution: stream 1.5 (8 km horizontal) not sufficient to resolve
inner core

Initialization: nudged bogus improves upon previous method (cold
start bogus), but still suboptimal

Physics: 2 ice categories (snow, pristine crystals) too simplistic;
surface fluxes; broader role of PBL in modulating inner core via rolls
may be vital for future high-resolution simulations

2012 Stream 2.0

Decided to address resolution issue first: a 4-member high(er)-
resolution ensemble (4.4 km horizontal spacing) with rudimentary
physics differences (surface fluxes, eddy viscosity) was run quasi-
operationally.

High-resolution (< 1 km spacing) idealized simulations were also
conducted to gain greater insight into PBL-inner core interaction.
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UW: Next Steps

Retro Test 2012 stream 2.0 configuration for 2013 stream
1.5 (i.e. upgrade from 8km to ~4km min. spacing)

Large-scale Diagnostics code

— for SPICE consensus; also, model development (forecast
behavior vis-a-vis environment should be revealing)

2013 Stream 2.0 plans

— Higher resolution (~3km), larger ensemble, broader physics
sampling (viz. microphysics, surface ﬂuxes PBL)

— Replace bogus initialization w/ DA, w/ or w/o cycling

— Clarify role of PBL rolls w/ regard to eyewall dynamics, structure
and intensity change

— Feed these results to stream 1.5 in 2014
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72 h Maximum Wind Speed Histogram
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In addition, short-term forecasts characterized
by positive midtropospheric moisture bias.
HYPOTHESIS: Too much moisture,
particularly in the upshear quadrant, leads to
more intense and axisymmetric convection,
eventually leading to intensity change
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Super parameterization of boundary layer roll vortices in

tropical cyclone models
Isaac Ginis and Kun Gao, University of Rhode Island

u

1. A Hurricane Boundary Layer
(HBL) with imbedded 2-LES
models is developed.

2. Formation mechanisms of roll
vortices and their interaction
with large-scale flow are
investigated

[ Grids of 2D-LES model ]

1

/
/
/

[ Grid of the HBL model ]

Structure of simulated rolls vortices (linear phase) at
the radius of maximum winds in an idealized 38
hurricane



Effect of Rolls on Mean Flow
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Results from Testing the Improved ESRL Sea-Spray Parameterization in the GFDL
Hurricane-Wave-Ocean Model using the GFDL Operational Physics and an Idealized
Vortex and Environmental Initialization

left column: without sea spray ; right column: with sea spray
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Impact of Sea Spray on Surface Drag and Enthalpy Exchange Coefficients

x 10 Transfer coefficients of heat and momentum Transfer coefficients ratio
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Right panel shows the 10-m neutral drag coefficient and enthalpy exchange coefficient as
functions of 10-m wind speed, while the left panel depicts the corresponding ratio of C,/Cp,.

Impact of Sea Spray on Idealized Intensification Using ARW
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HFIP Regional Modeling Team
Recent DTC Activities

Ligia Bernardet

www.dtcenter.org/HurrWRF/users

HWRF code management and support

" A ' d f?' ~- . _E
WREF for Hurricanes

J ‘
ere: DTC « My

WRF For Hurricanes

farms of Use Weicome to the users page on WRF for Hurricanes. The Weather Research
bverview and Forecasting (WRF) Mode! is designed to serve both operational forecasting
and atmospheric research needs. It features two dynamic cores, multiple
Pser Support < physical 2 al data 1 system, ability to
couple with an ocean moded, and a software architecture allowing for
2 computational paralielism and system extensibility. WRF is suitable for a broad
Documentation spectrum of applications, including tropical storms.
Futorial Information
Two robust configurations of WRF for tropical storms are the NOAA operational
hdditional Links model Hummicane WRF (HWRF) and the National Center for Atmospheric
Research (NCAR) Advanced Research Hurricane WRF (AHW). In this webste
users can obtain codes, datasets, and information for running both HWRF and
AHW,
The Developmental Testbed Center and the Mesoscale and Microscale

Meteorology (MMM) Division of NCAR support the use of all components of
AHW and HWRF to the community, induding the WRF atmospheric model
with its Preprocessing System (WPS), various vortex initialization procedures,
the Princeton Ocean Model for Tropical Cydones (POM-TC), the NOAA Naticnal
Centers for Environmental Prediction (NCEP) coupler, the NOAA Geophysical
Fluid Dynamics Laboratory (GFDL) Vortex Tracker, and varicus postprocessing
packages and graphical utilties.

The effort to develop AHW has been a collaborative partnership, principally
among NCAR, the Rosenstiel School at the University of Miami, and the Air
E h A :

The effort to develop HWRF has been a collaborative partnership, princpally
between NOAA (NCEP and GFDL) and the University of Rhode Island.

The EMC/MMM/DTC Joint WRF for Hurricanes
Tutorial

04.26.2011 to 04.29.2011

Location: NCAR, Foothils Lab, Boulder, CO

® 12 March 2010:
Beta V0.9 release of the HWRF system

* 31 March 2010:
WRF V3.2 release

Developmental Testbed Center (DTC)
NCAR's Mesoscale & Microscale Metecrology
Division (MMM)

Sponsors of WRF for Hurricanes

Y @

National Center for National Oceanic and
pheric Research A pheric Administration
(NCAR) (NOAA)

DTC

Developmental lestbed Center

HWRF v3.4a (2012
operational): code
downloads, datasets,
documentation,

helpdesk

460 registered users

Code management:
excellent integration
between operational,
developmental, and
community codes

Ongoing repository
maintenance and
testing
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Diagnostics

Accomplishments

* Evaluation of large scale characteristics in HWRF

* Completed comparison between EMC basinscale retro runs and GFS analyses

60N —

30N —

Lead time: 072 hr

BIAS 600-hPa Zonal Wind Speed
BHWREF forecast - GFS analysis

Period: September

BIAS 600-hPa Zonal Wind Speed
Lead time: 072 hr

GFS forecast - GFS analysis

DTC

150W

120W 90w

7 6 5 4 -3 -2 -1 0 1 2 3 4 5 6 7

Period: September
- — =
I~ < -
- — ==
60N — s e
\1.}\,
\
N~
30N — \&\ “r
0 —
T T T
0 150W 120W 90w

60W 30w 0

African jet too weak in HWRF

7 6 5 4 -3 -2 -1 0 1 2 3 4 5 6 7

In GFS jet dispmlgced to south

Developmental Testbed Cenfer

This is just a sample

Many variables, levels, forecast lead times and temporal aggregations

available
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Test of HWREF sensitivity to cumulus schemes

MAE for Track Error MAE for Intensity Error

2011: 08L(14),09L(32),12L(47),14L(36),16L(42),18L(20) 2011: 08L(14),09L(32),12L(47),14L(36),16L(42),18L(20)
f — :;gx ‘ &7 — ::gx Tested HWRF SAS,
: | = */H s, | =W MH iH\ new SAS, Tiedtke,
tf/jﬁ ’{d ’# Kain-Fritsh
£ 2 ﬁ“# P
B /M . HWRF SAS performs
T e e e e e T e h e e w e | bestfor track;
e Tine LeedTime ) differences in intensity
have little statistical
Track . pe
HNSA significance
HKF1
HTDK

Intens 72| 84| 96| 108

Statistical Significance 95%
Green= HWRF SAS better
Red = HPHY SAS worse

1, .

Developmental Testbed Center



HFIP Physics Workshop Summary
(Sept. 17-18 2012)

e Topic: Improving the intensity forecast skills of regional dynamical
models Progress ?

e Recommendations

1.

2,

3.

4.

Physics improvement: consider whole suite of physics rather than
focusing on one individual physics scheme. NO !
Utilization of observation: need to use the observation data (e.g.

HRD, JPL) extensively for evaluating/developing physics schemes. Yes
Diagnostic metrics: standardization of diagnostic metrics for
comparison/evaluation of various dynamical models. Somewhat
The proper initializations of hurricane vortex is recognized to be

essential for improving the intensity forecast skill in addition to physics. Yes

e Workshop webpage:

http://www.hfip.org/events/physics _workshop_ 9.12/index.php
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Concluding Thoughts

Significant progress has been made in improving track, structure and rainfall
forecast skills from regional models. Intensity skills are starting to show some
promise — thanks to HFIP for a coordinated development plan, especially for
operational HWRF.

However, regional models continue to lag behind global models in track skill. Still
do not know reason for this track degradation, as better representation of storm
structure previously lead to improved tracks. Is this inferior physics, degraded
vertical resolution or lateral boundary effects ??? Use of extended domain
configuration for HWRF (Basin Scale) is promising.

The use of observations for model physics improvements and improved initial
conditions appears to show some promise for HWRF. However, weak and
sheared storms continue to pose severe challenges for intensity predictions.

Physics workshop recommendations are excellent benchmark to follow.
Progress being made, yet physics development greatly in need of coordinated
effort (focus on suite of high-resolution physics).

Do our models lack the advanced physics needed to address intensity change ?
If so, should far more resources be devoted to this following guidelines of
workshop recommendation one.

Should more resources be devoted to improved moisture initialization and
assimilation of aircraft data based on results ?

Regional model ensembles show promise in improving the intensity forecasts.
Should continue with these efforts with operational HWREF.

Unified physics approach for all regional models (including high-resolution
convective parameterization) would benefit improving our understanding and
eventually address the intensity forecast problem. a6



