
Characteristics of intensity errors in the 
HWRF model and predictability implication
Chanh Kieu,
Department of Earth & Atmospheric Sciences
Indiana University, Bloomington

Collaborators: Quan Wang (IU), Kushal Keshavamurty (IU), Allies Downs (IU), Vijay 
Tallapragada (EMC), Zhan Zhang (EMC), Avichal Mehra (EMC), Sundararaman
Gopalakrishnan (HRD) 

HFIP Telecon, October 2018



• Introduction 
• TC intensity dynamics
• Intensity error characteristics 
• HWRF intensity error saturation
• HWRF intensity error growth
• HWRF idealized analyses
• Concluding remarks

Outline



Introduction

Substantial track error 
improvement over years but 
not much in intensity!

The intensity error curve 
looks fundamentally 
different from the track error 
curve!



The district behaviors of the track and intensity errors bring 
up several fundamental questions that we wish to address

1. Is the intensity predictability different from track predictability?

2. Are intensity errors due to the intrinsic variability or they are due 
to the model deficiency?

3. Is there any limit in reducing the intensity errors further?

4. What is the fraction of the intrinsic variability of the TC intensity 
as compared to the total real-time intensity error in the HWRF
model?; and

5. How does the intrinsic variability change with large-scale 
environment?;

Scientific questions
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Approach to TC intensity error problem

There are two approaches to understand the TC intensity error 
characteristics;

1. Deterministic formalism (or Dynamical framework): Apply for point-like TC
intensity metrics by which TC models are treated as a deterministic dynamical 
system that output TC basic measures:

𝑑𝑑𝐗𝐗
𝑑𝑑𝑑𝑑 = 𝑀𝑀 𝐗𝐗

where 𝐗𝐗 ≡ (𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚,𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚,𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑅𝑅𝑅𝑅𝑅𝑅,𝑇𝑇′). The predictability now focuses 
on 1) existence of attractor (boundedness), ii) denseness, and iii) Lyapunov 
exponent;

2.   Statistical formalism: Apply for field-like TC intensity metrics by which TCs are 
considered as turbulence systems, but then what do we mean by intensity? Is that 
wind distribution, moisture, temperature ? What observation can we use to verify 
this intensity and construct climatology? Potential useful in future if satellite obs
becomes much more details.  

5
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Deterministic framework

Dynamical systems within the deterministic framework 
essentially has three different categories:
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• Stable systems: 𝜖𝜖 𝑡𝑡 = 𝜖𝜖0𝑒𝑒−𝜆𝜆𝜆𝜆

• Unstable systems: 𝜖𝜖 𝑡𝑡 = 𝜖𝜖0𝑒𝑒𝜆𝜆𝜆𝜆

• Chaotic systems: i) 𝜖𝜖 𝑡𝑡 = 𝜖𝜖0𝑒𝑒𝜆𝜆𝜆𝜆, ii) 
boundedness, and iii) denseness

Track errors !!!

Intensity errors !!!



Deterministic framework

Remarks: 
- For chaotic attractors, noncentral orbits are unstable (because central orbits are unstable)
- Nonperiodic orbits are unstable 7

𝛿𝛿𝑥𝑥0

Unstable orbits

𝛿𝛿𝑥𝑥0

Stable orbits

To verify the TC intensity predictability within the deterministic framework , it is 
important to clearly distinguish several different dynamical behaviors in phase 
space. 

Noncentral orbits Central orbits
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Proof of a stable MPI equilibrium
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A low-order model based on the TC-scale 
dynamics was recently presented to 
examine the TC development in a reduced 
phase space (U,V,B) (Kieu 2015 QJ, Kieu 
and Wang 2017a,b, JAS)

V: maximum surface wind
U: maximum radial wind
B: warm core

• The MPI is structurally stable and unique;
• The MPI is characterized by (U,V,B);
• The WISHE hypothesis is consistent with 

the MPI’s stability ;

Deterministic framework: A low-order model

All TC intensity will approach the 
same MPI limit (assuming the 
same environment)  → all 
intensity errors will go to zero?



Kieu and Moon (2016, BAMS)

Characteristics of the MPI attractor

• Boundedness;
• Denseness (ergodic);
• Positive leading Lyapunov exponent;
• The MPI attractor depends on large-

scale environment
9

V = 65 ± 8 m/s

Deterministic framework: Axisymmetric model

Idealized experiment
• Use Rotunno and Emanuel (1987) 

TC axisymmetric model;

• A bounded system;

• 1000-day simulation;

• 5 x 104 DOF → examine stability in a 
reduced phase space of (V,W,B);
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• Intensity errors grow 
quickly during noncentral
(transient) orbits, but 
eventually converge 
towards the MPI  attractor 
regardless of initial 
conditions;

• Inside the MPI attractor, a
slight perturbation at the 
maximum intensity limit 
will drift the systems 
quickly → no way to 
control intensity errors at 
the mature stage ~ 8 m/s;

Characteristics of the MPI attractorAxisymmetric model: intensity predictability 



Characteristics of the MPI attractor
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Real-time HWRF forecasts: methodology

So how can we realize the intensity predictability from real-time HWRF
forecast, given various inferences related to obs errors, mixed cycles,
landfalling, weakening/intensifying cycles, model errors…?

Two criteria to extract the intensity intrinsic variability from real-time
intensity forecasts are (Kieu et al. 2018, QJ)

1. Quantifying the error saturation based on real-time errors: this is a
must for any chaotic system

2. Verifying that an intensity noncentral orbit is unstable: Stratifying the
error growth rate for intensifying cycles to see the error growth at
different stages of TC development;
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Characteristics of the MPI attractor
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Real-time HWRF forecasts: methodology

• TC intensity errors grow and approach a 
saturation limit after 4-5 day lead times;

• Different basins have different intensity 
error saturation → dependence of 
intensity variation with large-scale 
environment;

• The saturation is most apparent in the 
WPAC and EPAC basin, but not in NATL 
basin due to the dominance of weaker 
storms

But how can we extract the intrinsic 
intensity variability from this real-
time errors, given various obs, 
model, track errors?

Characteristics of the MPI attractorReal-time HWRF intensity error saturation



Given 𝜎𝜎𝑜𝑜 = 7.5 kt (Torn and Snyder (2012), we then 
have
• For NATL: 𝜎𝜎𝑣𝑣= 15 kt, 𝜎𝜎𝑜𝑜= 7.5 kt → 𝜎𝜎𝑚𝑚= 12.9 kt,
• For EPAC: 𝜎𝜎𝑣𝑣= 16 kt, 𝜎𝜎𝑜𝑜= 7.5 kt → 𝜎𝜎𝑚𝑚= 14.1 kt,
• For WPAC: 𝜎𝜎𝑣𝑣= 20 kt, 𝜎𝜎𝑜𝑜= 7.5 kt → 𝜎𝜎𝑚𝑚= 18.5 kt, 

𝜎𝜎𝑣𝑣 𝜏𝜏 = 𝜎𝜎𝑚𝑚 𝜏𝜏 + 𝜎𝜎𝑜𝑜
−2𝐸𝐸 𝑉𝑉𝑚𝑚 𝜏𝜏 𝑉𝑉𝑜𝑜 𝜏𝜏 − 𝑉𝑉𝑡𝑡2 𝜏𝜏

Let 𝜖𝜖(𝜏𝜏) = 𝑉𝑉𝑚𝑚(𝜏𝜏) − 𝑉𝑉𝑜𝑜(𝜏𝜏) the VMAX
error at lead time 𝜏𝜏, 

But 𝜎𝜎𝑚𝑚 still includes 
TC intrinsic dynamic 
errors and the 
model errors !!!

𝜎𝜎𝑣𝑣 → 𝜎𝜎𝑚𝑚 + 𝜎𝜎𝑜𝑜
𝜎𝜎𝑜𝑜

𝜎𝜎𝑚𝑚 𝜎𝜎𝑣𝑣

Characteristics of the MPI attractorReal-time HWRF intensity error saturation
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Idealized HWRF simulation
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• Use of idealized HWRF (V3.7) 
• Implement a scheme to add random 

perturbation at different stages of 
intensification

• (9/3/1km) setup, but the test so far were 
only for 9/3km configuration

• Focus on the rapid intensification (RI)  
and mature stage period every 3 hours

• Varying SST and shear to determine how 
large-scale environment change the 
error saturation

An ensemble is created for each perturbed moment 
to eliminate representative errors.
- 5 different samplings
- 7 different perturbation sizes
- (4 different parameterizations)
- (Shear vs no shear)

VM
AX

Time

Idealized experiments: perfect model scenario
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Idealized HWRF simulation
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Perfect model scenarios:

• Idealized experiments at 
900 m resolution

• Perturbations added at 
different stages of 
development

• An ensemble of 10 random 
realizations is added at 
each stage of development  
to increase  
representativeness

All intensity errors w.r.t. control shows 
a bounded error ~ 8 kt (4 ms-1)

The difference between real-
time 𝝈𝝈𝒎𝒎 (12-19kt) and idealized 
𝝈𝝈𝒄𝒄 (~8 kt) appears to be due to 
the model errors?
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Characteristics of the MPI attractor
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Real-time HWRF error growth

- 𝝐𝝐 = 𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽−𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 𝒕𝒕=𝟏𝟏𝟏𝟏𝟏𝟏− 𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽−𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 𝒕𝒕=𝟎𝟎
𝟏𝟏𝟏𝟏 𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉

- Faster error growth during the intensification
→ indication of unstable noncentral orbit
that support the chaotic MPI attractor.

- Error growth rate subsides once attaining the
mature stage, representing the growth rate
(positive leading Lyapunov exponent) inside
the chaotic attractor;



Progressively larger spread of the intensity composite

Real-time HWRF error growth
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Discussions
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So what have we learned from all of these analyses? 
• Unlike track errors, we are closer to confirming that the TC intensity has an 

intrinsic variability due to the TC dynamics rather than the model issues;

• The error saturation limit is not universal, but changes with the large scale 
environment. So the goal of reducing intensity error must be basin-wide 
dependent;

• Intensity errors will grow faster during the TC development -> intensity forecasts 
of the early cycles are more reliable, and so it is progressively harder to predict 
as TCs intensify;

• The HWRF hurricane intensity forecast errors based on the absolute VMAX 
metric will have a limited threshold of 8 kt, but this is still not actual intrinsic 
yet.   
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So if we cannot bring the absolute intensity error down below 
a threshold, then how can we improve TC intensity errors in 
future TC models?
1. Focus on the VMAX bias. There may have a limit on the 

absolute errors, but the VMAX bias for different 
stratifications can really tell a model is good or not;

2. Change the metric of the TC intensity by, e.g., the phase 
of development, RI, RW, or introduce new 3D metric or 
2D metric such as radar reflectivity, rain or wind swath;

Characteristics of the MPI attractorFuture HWRF development?



Appendix



We have seen from real-time intensity 
errors analyses that:

1. Existence of a saturated error Γ
2. Faster growth rates (indication of 

positive leading Lyapunov 
exponent)

Question: can we say anything about 
the predictability limit here?

Answer: yes, it is likely, and so the 
range of TC intensity predictability 
becomes shorted for stronger storms. 
If so, the saturation time must be 
shortened as a consequence

Real-time intensity error growth

Real-time intensity error growth 
saturation lead times for intensifying 
cycles.

Shorter saturation time -> 
more difficult to forecast
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TC energy spectrum at the MPI limit

• Analysis of the energy 
error spectrum for TC
radius-height band 
shows several 
spectrums at different 
scales! 

• At < 30 km, -7/2 
spectrum emerges -> 
unlimited predictability!

• Is this representative or 
model dependence?
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1450 km
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m

TC energy spectrum density obtained from Rotunno and Emanuel’s 
axisymmetric model (1987)



HWRF intensity error growth sensitivity

Sensitivity experiments with different initial perturbation amplitudes



INDIANA UNIVERSITY BLOOMINGTON
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Environment-controlled predictability

SST Sensitivity:
• MPI increases with SST;
• 𝜎𝜎𝑐𝑐 is still small 4-8 kt, but it 

increases with SST, indicating 
the large-scale control on 
intensity variability

SST = 28oC

SST = 30oC SST = 32oC
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Environment-controlled predictability

Shear sensitivity
• MPI decreases with shear
• 𝜎𝜎𝑐𝑐 shows no change with 

shear

Shear = 1 ms-1 Shear = 5 ms-1
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Characteristics of the MPI attractor
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Real-time HWRF forecasts: methodology

Error saturation analyses: Quantify the practical predictability for real-cases
during the mature stage under the following assumption
• TC development reaches maximum intensity in 4-5 days
• Dynamic errors and observational errors are uncorrelated after long lead 

time
• No landfalling effects (only intensifying stage)
• SST in each basin are statistically different
• Errors are random
• All weak storms eliminated

Let 𝜖𝜖(𝜏𝜏) = 𝑉𝑉𝑚𝑚(𝜏𝜏) − 𝑉𝑉𝑜𝑜(𝜏𝜏) the VMAX error at lead time 𝜏𝜏, then we will
have

𝜎𝜎𝑣𝑣 𝜏𝜏 = 𝜎𝜎𝑚𝑚 𝜏𝜏 + 𝜎𝜎𝑜𝑜 − 2𝐸𝐸 𝑉𝑉𝑚𝑚 𝜏𝜏 𝑉𝑉𝑜𝑜 𝜏𝜏 − 𝑉𝑉𝑡𝑡2 𝜏𝜏



Characteristics of the MPI attractor
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Real-time HWRF forecasts: methodology

Error growth analyses: Quantify the practical predictability for real-cases
during noncentral orbit period (i.e., intensifying period)

• Using NHC/JTWC best track database for three basins (NATL, EPAC and 
WPAC)

Compute 18-h intensity error growth rate as follows:
𝝐𝝐 = 𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽−𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 𝒕𝒕=𝟏𝟏𝟏𝟏𝟏𝟏− 𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽−𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 𝒕𝒕=𝟎𝟎

𝟏𝟏𝟏𝟏 𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉
• Stratifying the error growth rate based on different initial intensity bins: 25-

45 kt, 46- 65 kt, 66-85 kt, 86- 105 kt, 106-120 kt, and 121-185 kt.
• Select only intensifying cycles in all 3 basins NATL, EPAC, and WPAC
• Note: small sample size for 121-185 kt. 
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