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Motivating Questions

Q1: What is the key feature(s) of convection
leading up to genesis?

Q2: What thermodynamic conditions promote
the development of such a key feature?

Q3: What are the relative roles of different types
of precipitation in TC genesis?



Data

GribSAT-B1 IR (Knapp et al. 2011)
— 3-hour data; resolution: ~ 7 km
Rain rate and column water vapor (CWV) from SSMI/SSMIS
Rain rate and reflectivity from TRMM PR 2A25
Best track data to define genesis: the formation of a TD in most cases

A pouch track dataset for 164 named storms over the Atlantic from 1989-
2010 (Wang and Hankes 2014)

— Like the best track data but for precursors

6 hourly data from ERA-Interim Reanalysis
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Q1: What is the key feature of convection
leading up to genesis?

--- GRIBSAT IR data: high spatial and temporal
resolution with continuous observation



IR imagery: which one is a tropical cyclone?
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Time Prior to Genesis (H)

(a) Time-radius Plot
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Three Clusters of Different Spatial Patterns: IR

Genesis Time
(a) Cluster 1 (Genesis) 31% (b) Cluster 2 (Genesis) 38% (c) Cluster 3 (Genesis) 31%
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What causes the different spatial patterns?
How do the differences affect the TC development? 250
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Three Clusters : Relative Flow (10deg Box)
U(p)-U(700 hPa)

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3
———| [
200 A | > 200 A 200 A <::|
300 - 300 1 300 A
400 H 400 1 400 H
000 1 500 1 000 -
600 - 600 - 600 -
700 - 700 A 700 -
800 - 800 - 800 -
o . )
1000 ' ' ' ' ' 1000 I I ' ' ' 1000
-72 -60 —-48 -36 —-24 —-12 O -72 -60 —-48 -36 -4 —-12 0 -72 -60 —-48 -36 —-24 —-12 O
Time (Hours) Time (Hours) Time (Hours)
T T 1 I I | I I I I I
) -4 -3 -2 -1 0 1 2 3 4 6

Cluster 1: strong westerly relative flow in the upper troposphere
Cluster 3: weak easterly relative flow in the upper troposphere;
strong westerly relative flow in the boundary layer
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Three Clusters : Relative Humidity (600 hPa)

Cluster 1: A moist pouch
detached from the ITCZ?

Cluster 2: An isolated moist
core surrounded by dry air.

(a) Cluster 1
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(c) Cluster 3

Cluster 3: A large moist
pouch embedded in the ITCZ
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Three Clusters : Relative Vorticity (700 hPa)
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East-west Vertical Cross Section: OW (contours) and RH
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* A small convective core does not mean a weaker vortex.

* Displacement of convection off the pouch center is

associated with a weaker vortex.
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Time Series of Median IR for Each Cluster
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The transverse circulation is driven
by the gradient of diabatic heating,
instead of the heating itself!
Heating is most effective when the
maximum is collocated with the
vorticity center. Wang 2017



IR imagery: which one is a tropical cyclone?
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Three Clusters : TC Size
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Mean AR34
Median AR34 72 53 62

AR34: Radius of 34-knot winds averaged over one day
after the declaration of a tropical storm.

Restricted to a latitude band 10-25N.
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Q2: What thermodynamic conditions promote
convective organization near the pouch center?

--- SSMI/SSMIS data: simultaneous rain rate and
CWV retrievals



Equivalent Potential Temperature Profiles:
inner vs. outer pouch region
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The midlevel Be
increases
significantly near
the pouch center
one to two days
prior to genesis
but changes little
away from the
pouch center.
This may be an
indicator of the
impending TC
genesis.
Consistent with
Nolan (2007)



Time-Radius Plots of Rain Rate and CWV
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Dry air and Cloud Buoyance
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Entrainment of dry air will
induce evaporation of cloud
hydrometeors and reduce the
cloud buoyance. Or deep
convection is more likely to
develop in a moist
environment




WRF Simulations: Cumulative Distribution of w

(a) Inner region: w (4 km)
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Precip vs. Column Water Vapor

Daily-mean, P vs W Bretherton et al. 2004
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Precip increases exponentially with the column water vapor (Raymond 2000;
Bretherton 2004).



Column RH-Precipitation relationship
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Q3: What are the relative roles of different types
of precipitation in TC genesis?

--- TRMM PR 2A25: vertical profile of reflectivity



Stratiform vs. Convective Precipitation

Stratiform Convective

 Stratiform process: favors
the development of a mid-
level vortex.

* Convective process: favors
the spin-up of the low-level
circulation.




Trimodal Distribution of
Convective Clouds

Partitioning of convection:
Echo top height derived from 2A25 reflectivity was

used to partition the three types of convection. Iohnson e al. 1999
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TRMM PR: Frequency of occurrence of
Precipitating Pixels
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TRMM PR: Pixel Rain Rate

(d) Cond. Mean Rain Rate
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TRMM PR: Contribution to the Mean
Rain Rate

(a) Contrib. Mean Rain Rate
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Contribution by congestus >
contribution by deep convection _
. Total contribution by mid-level and
deep convection is comparable to
that by stratiform precipitation.
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Stratiform vs. Convective Precipitation

Stratiform Convective

 Stratiform process: favors
the development of a mid-
level vortex.

* Convective process: favors
the spin-up of the low-level
circulation.




Height (km)

Stratiform Precipitation
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Stratiform heating contributes to the midlevel spinup
without significantly spinning down the low-level
circulation.

Wang, 2012



Summary

* The key feature of convection for TC genesis is not the
intensity or extent of deep convection, but the
convective organization near the pouch center.

* Column moistening near the pouch center precedes the
transition to sustained deep convection and tropical
cyclogenesis.

* Tropical cyclogenesis may be an outcome of the
collective contribution by different types of
precipitation.



