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Background

Bu et al. (2014)
Fovell et al. (2015)




Terminology

* “Semi-idealized” = experiments with simplified initial
conditions utilizing operational model configurations as
starting points

* “Cloud-radiative forcing” (CRF) = influence of hydrometeors
on longwave and shortwave radiation

* CRF-on = total radiative forcing includes clear- and cloudy-sky
components

* CRF-off = clouds transparent to radiation but clear-sky
radiative forcing still ongoing




“Semi-idealized” HWRF experiment
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10 m wind speed (m/s)

“Semi-idealized” HWRF experiment

Thompson/RRTMG CRF-on and CRF-off
Thompson/GFDL
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HWRF Thompson/RRTMG - condensate and‘net radiation
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CRF influences storm size
CM1 axisymmetric Thompson/Goddard

mixing ratio (g/kg)

6.4

3.2

16

0.8

04

0.2

0.1

0.05

¢ Condensate and radiation fields
in axisymmetric model

e Radiation field imposed as
external forcing

e Showed that cloud-top forcing
almost irrelevant. Within-cloud
LW warming is the key.
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e Expanded radiation field

¢ Standard radiation field

¢ Contracted radiation field

Fovell et al. (2015)
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PBL influences on storm size

Zhang et al. (2011)
Gopalakrishnan et al. (2013)




height (m)

height (m)

Zhang et al. (2011)

Vr normalized by peak inflow of 20 m s'1, Cat 1-5 storms

1500t

1000+

1500

-
o
o
(=]

N
o
o

0

normalized radius
(XRMW)

100 %

e Composite radial inflow vs. normalized
radius for Cat 1-5 (top) and Cat 1-3 storms

e BL top defined as 10% of max inflow
(one of several PBL depths examined)

e BL depth increases to ~ 1300 m by 3RMW




HWREF inner core inflow depth

e Gopal et al. (2013)

10 idealized HWRF
EE 1. L 3 . . o "‘3
9 );a.d.s.s:g > - ¥ ;4<¢<<<qra< 0.0 . .
8-°’ N o ' el i e ,z' -6 e inner-core inflow too deep
. \_‘[";"f“"‘f’ reccccccccccia) W g relative to observations with
ey f | ; _ standard GFS PBL scheme
.tg-“"*r rrc(cqqqchqc < < 4 12
61 o1 : . . - =001
AW -0.01 -
Z(km)s_‘é}?‘i’b‘:&> ,0&(““““““‘«?1‘ 15
| g1 gl P18
4"'>1'>'.(‘LQJ‘ r<<¢0-3b-1<111¢<<<qo<<4
: ~0.01 : : ¥ —{—21
q- . : ‘ HE
>p>:>7 t((!‘i((((‘((“‘((“( _24
2' ("4((1!“((‘(1 27
1- -30
0-

30 60 90 120 150 180 210 240 270
R(km)

Zhang et al. composite dep?h
(purple line; for Cat 4-5?)




HWREF inner core inflow depth

'Ziqqqqf<<<nchc¢<<(33<o
P74 rCCCLCLCELCCLCCCCLLCLE € C

577 r;‘((.((CE((C%(C‘E(C‘EC(Q‘
—003
7]-((“‘(““((‘(((‘((“
:SE'
ri((i(““(“((“((“‘(

11 —oos

- € €

AL AL T R S

30 80 90 120 150 180 210 240 270
R(km)
5

e Gopal et al. (2013)
idealized HWRF

e depth more realistic,
and RMW smaller when
PBL diffusion artificially

suppressed

e 00=0.25 (“gfs_alpha”)

l

K =k(UJd )Z[a(l - ZIh)],




Tuning the PBL scheme

gfs alphaparameter
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Note in passing:
Two separate approaches to controlling
the hurricane PBL now exist in HWRF

(1) gfs _alpha

(2) Variable critical Richardson number (var ric), added
in 2013

e So far, semi-idealized aquaplanet experiments suggest var ric in isolation [ 17 J
has little impact on storm width, a small influence on intensity,
and a cosmetic effect on reported PBL height (see Appendix)




Impact of gfs alpha on storm size in
semi-idealized simulations

gfs alpha acts similarly to CRF, but for different reason...
Simulations use HWRF 2013 official release via DTC




height (km)

F/GFDL/alpha=0.7

NONN
- B -~

@
=)
®
=
3
)

—
w

Cat 1-5 avg.

—
N
"

normalized radius 3RMW
e 05 &5 5 ¢
radial velocity (m/s)
e Symmetric radial and tangential winds
hours 72-96
e Operational configuration e Differences from operations
gfs_alpha=0.7,0.7,0.7 (in 2013) 2012 domain configuration
coac=0.75, 3.0, 4.0 simplified initial conditions, no land [ 19 J
Ferrier MP no ocean model coupling
GFDL radiation model physics called every time step

Variable Ri
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® Results congruent with Gopal et al. (2013)

e 2013 operational gfs alpha produces
deeper, weaker inflow, even with [ 22 J
variable critical Richardson number




gfs alpha also influences outer
winds...

Width differences were disguised with nondimensionalized radius
Direct impact on storm structure and size
Indirect impact on motion (via beta drift)
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Other factors being equal...

CRF encourages wider storms

LW in-cloud warming > gentle ascent = enhanced heating 2
broader horizontal wind profile

Bu et al. (2014, JAS) explains how and why
Increasing gfs_alpha also encourages wider storms
Using radiation package lacking significant CRF (e.g., current
operational HWRF) can partially compensate for a possibly
too-large value of gfs _alpha

Using a CRF-enabled radiation scheme (e.g., RRTMG) AND a
large value of gfs alpha may force storms to be too wide

Summer 2014 DTC visit - started examining DTC microphysics/
radiation ensemble. Clear evidence of positive size bias for
Thompson/RRTMG in Atlantic; East Pacific more complex (track
errors = demise when SST gradients are large)




How is gfs alpha modulating storm
size?

(And when might it fail to have much impact?)
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Condensation and K

e As shown in Gopal et al. (2013), increasing gfs_alpha permits larger K |
e Condensate (shaded) and K_, (contoured)
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Water vapor and K differences
due to o (semi-idealized)

F/RRTMG - difference between o.= 0.7 and 0.25

more moist
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more mixing
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* Larger gfs_alpha permits greater K | (9 K 8q
e ... which increases vapor at PBL top h
0z 0z

e ... which enhances chance of saturation
e ... which produces heating that broadens the wind profile
e Effect will be diminished if Km too small, environment too stable, or too dry




Water vapor and K differences
due to o (Daniel 04E 2012070406)
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e Pattern somewhat similar but magnitudes reduced, shifted downward, impact smaller
e Environment more stable, SST lower, than in semi-idealized experiment
e Example of when gfs_alpha will have less influence
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What's the optimal value of gfs alpha?

(if any)
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Summary

* Enabling CRF and enhancing PBL mixing can both lead to
wider storms, as measured by R34, etc..

* Connection appears to be indirect, largely via convective
activity (moistening = heating = wind field broadening)

CRF gently lifts air through a large storm volume, mainly above
PBL (Bu et al. 2014)

PBL mixing lofts moisture
* Both enabled CRF and larger gfs alpha can fail to influence
storm size, when interaction with convection is weak or
absent
This may dilute aggregated ensemble statistics




Future work

* Explore more direct capping of K_ based on wind speed
Being tested at EMC now
May obviate need to hunt for optimal gfs_alpha value
* Examine and analyze a range of gfs_alpha valuesin
retrospective simulations, mindful of physics interactions

Hypothesis: CRF-enabled radiation schemes may require smaller
a values. This may be why RRTMG hasn’t yet been adopted as
default operational HWRF

* Understand the direct impact of variable Richardson number
(var ric)in real-data simulations
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Extra slides




Effect of variable critical Ri (var ric)on
semi-idealized storm structure:
Preliminary assessment

Executive summary: impact is minor on aquaplanet runs,
dwarfed by gfs alpha influence




PBL height vs. normalized radius:
var ric=1vs.0

PBLH HWRFB_F_RRTM_04 vs HWRFB_F_RRTM_05
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PBL height vs. normalized radius:

var ric=1vs.(0
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10m wind speed (m/s)
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