Evaluation of Shear-relative Hurricane Structure from the 2012 HWRF Baseline Model

Paul Reasor, HRD/AOML/NOAA

Background

Zhang and Tao (2013, JAS) found that with increased vertical wind shear comes increased uncertainty in the intensity forecast.

Reasor et al. (2013, MWR) recently documented the shear-relative structure of hurricanes using airborne Doppler-radar composites from NOAA P-3 flights into 18 storms.

As an initial step towards <u>understanding the HWRF model's</u> <u>challenges in predicting sheared hurricane intensity</u>, a shear-relative analysis of structure, similar to that in Reasor et al., is performed using the 2012 Baseline model.

Methodology

Following Reasor et al. (2013):

- Map storm-relative winds to a cylindrical coord.
 system centered on the low-level vortex (here, HWRF surface pressure centroid)
- Normalize radial coord. by the 2-km symmetric RMW
- Rotate fields such that the large-scale 850-200-hPa shear vector points due east
- Construct shear-relative structure composites

Focus here only on the domain represented by the radar analyses

Database of Cases

HWRF (6-hourly sampling)

Radar-based

Environment and Vortex Properties

HWRF database

SST U_s S₈₅₀₋₂₀₀ SST U_s S₈₅₀₋₂₀₀ V_{max} V_{2km} RMW_{2km} SO 20 40 60 80 100 0 20 40 60 80 100 0 30 60 90 120 150 km/s

Radar database

 $S_{850-200}$ = SHIPS deep-layer shear SST = Sea surface temperature U_s = Storm motion V_{max} = Peak 10-m wind V_{2km} = Max. 2-km symm. tang. wind RMW_{2km} = Radius of V_{2km}

- More low SST cases in HWRF database (higher latitude)
- HWRF-simulated hurricanes have larger eyewalls → Does this enhance resilience?

2-km Symm. Tang. Wind and Vorticity $(r^* = r/RMW_{2km})$

HWRF database

Radar database

■ On average, the HWRF-simulated hurricanes have less (normalized) vorticity at 1.5-3 RMW, but a larger radial *gradient* of vorticity → Net impact on resilience?

2-7-km Vortex Core Displacement

HWRF database

Radar database

Solid (open) circles represent intensity less (greater) than mean intensity of database

- Downshear to downshear-left preference for hurricane core tilt
- HWRF database reveals a higher frequency of core tilt values > 5 km → Is this difference an artifact of a bias in the radar database sample?

2-7-km Vortex Core Displacement (Composite)

HWRF database

Radar database

Note:

- On average, HWRF-simulated hurricane tilts more to the left of large-scale shear
- HWRF-simulated local 2-9-km shear (120-km radius with vortex "removed") more closely aligns with the large-scale shear

Maximum Convective Area Location

HWRF database

Radar database

Number of cases in which the peak convective area (defined by the region with 5-km Inner (outer) band W > 2-2.5 (1-1.5) ms⁻¹) falls within a given octant or quadrant.

Inner band: $0.8 < r^* < 1.2$ Outer band: $1.5 < r^* < 2.5$

Wind, Divergence, and Vorticity (Composite)

Windspeed (ms⁻¹)+pert. vectors div. ($\pm 1 \times 10^{-4}$ s⁻¹, contour) pert. vort. (10^{-4} s⁻¹)

7 km

2 km

Radar database

Windspeed (ms⁻¹)+pert. vectors div. ($\pm 1 \times 10^{-4} \text{ s}^{-1}$, contour) pert. vort. (10^{-4} s^{-1})

Vertical Velocity and θ_e/dBZ (Composite)

HWRF database 5-km W (contour) and θ_e (K, shaded)

Radar database

W contours: 0 (ms⁻¹, dashed); 0.5, 1, 1.5, 2 (ms⁻¹, solid)

Vertical and Radial Velocity and θ_e/dBZ (Quadrant-Mean Composite)

HWRF database

Vertical wind (-.25,0,.25,.5,1,1.5,2 ms⁻¹, black) radial wind (±1,2,4,6,8,10,15,20 ms⁻¹ gray) θ_{o} (K, shaded)

Radar database

Vertical wind (-.25,0,.25,.5,1,1.5,2 ms⁻¹, black) radial wind (±1,2,3,4,5,... ms⁻¹, gray)

Refl. (dBZ, shaded)

Summary

Relative to the radar-based study of Reasor et al. (2013), the composite analysis of shear-relative hurricane structure from the 2012 HWRF baseline model reveals:

- Lower (normalized) vorticity outside the RMW, but a greater radial gradient of vorticity there
- Greater tilt of the core, on average, but still a preference for a downshear-left orientation
- Composite eyewall ascent that is more sloped than from observations
- A core-region kinematic asymmetry that is broadly consistent with observations. The pattern of core-region descent and the low-level flow/thermo. structure require further investigation.

Future Work

Include a greater number of storm cases to increase the diversity of the sample.

Extend HWRF diagnostic analyses to a larger domain, and focus more on processes involved in shear-induced intensity change (e.g., transport of low- θ_e air into HBL).

Recommendations:

- Test existing and future configurations of the HWRF model within this shear-relative diagnostic framework to ensure consistency with observations.
- 2) Use the extended HWRF diagnostic analyses to guide future sampling of observed sheared hurricanes.