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Background 
Zhang and Tao (2013, JAS) found that with increased vertical 

wind shear comes increased uncertainty in the intensity 
forecast. 

 

Reasor et al. (2013, MWR) recently documented the shear-
relative structure of hurricanes using airborne Doppler-
radar composites from NOAA P-3 flights into 18 storms. 

 

As an initial step towards understanding the HWRF model’s 
challenges in predicting sheared hurricane intensity, a 
shear-relative analysis of structure, similar to that in 
Reasor et al., is performed using the 2012 Baseline model. 

 
 



Methodology 

Following Reasor et al. (2013): 
 

 Map storm-relative winds to a cylindrical coord. 
system centered on the low-level vortex (here, HWRF 
surface pressure centroid) 

 Normalize radial coord. by the 2-km symmetric RMW 
 Rotate fields such that the large-scale 850-200-hPa 

shear vector points due east 
 Construct shear-relative structure composites 
 

Focus here only on the domain represented by the 
radar analyses 

 
 



Database of Cases 

                   HWRF (6-hourly sampling)                                                  Radar-based 



Environment and Vortex Properties 

                           HWRF database                                                          Radar database 

S850-200 = SHIPS deep-layer shear     SST = Sea surface temperature     Us = Storm motion 
Vmax = Peak 10-m wind     V2km = Max. 2-km symm. tang. wind     RMW2km = Radius of V2km 

 More low SST cases in HWRF database (higher latitude) 
 HWRF-simulated hurricanes have larger eyewalls  Does this enhance resilience?  



2-km Symm. Tang. Wind and Vorticity 
(r* = r/RMW2km) 

                                      HWRF database                                 Radar database 

 On average, the HWRF-simulated hurricanes have less (normalized) vorticity  
   at 1.5-3 RMW, but a larger radial gradient of vorticity  Net impact on resilience?  



2-7-km Vortex Core Displacement 

                                     HWRF database                                            Radar database 

 Downshear to downshear-left preference for hurricane core tilt 
 HWRF database reveals a higher frequency of core tilt values > 5 km  Is this  
   difference an artifact of a bias in the radar database sample? 

Solid (open) circles represent intensity less (greater) than mean intensity of database 



2-7-km Vortex Core Displacement 
(Composite) 

                                  HWRF database                                             Radar database 

Note:  
 On average, HWRF-simulated hurricane tilts more to the left of large-scale shear 
 HWRF-simulated local 2-9-km shear (120-km radius with vortex “removed”) more  
   closely aligns with the large-scale shear 



Maximum Convective Area Location 

                                  HWRF database                                             Radar database 

Number of cases in which the peak convective area (defined by the region with 5-km  
Inner (outer) band W > 2-2.5 (1-1.5) ms-1) falls within a given octant or quadrant. 
 

Inner band: 0.8 < r* < 1.2      Outer band: 1.5 < r* < 2.5 



Wind, Divergence, and Vorticity 
(Composite) 

                                HWRF database                                                    Radar database 
      Windspeed (ms-1)+pert. vectors                                                 Windspeed (ms-1 )+pert. vectors             
               div. (±1x10-4 s-1, contour)         pert. vort. (10-4 s-1)                 div. (±1x10-4 s-1, contour)         pert. vort. (10-4 s-1)  

7 km 

2 km 



Vertical Velocity and θe/dBZ 
(Composite) 

                               HWRF database                                              Radar database 
                     5-km W (contour) and θe (K, shaded)                     5-km W (contour) and 2-km Refl. (dBZ, shaded) 
                                      

W contours: 0 (ms-1, dashed); 0.5, 1, 1.5, 2 (ms-1, solid) 



Vertical and Radial Velocity and θe/dBZ 
(Quadrant-Mean Composite) 

                             HWRF database                                                  Radar database 
            Vertical wind (-.25,0,.25,.5,1,1.5,2 ms-1, black)                 Vertical wind (-.25,0,.25,.5,1,1.5,2 ms-1, black) 
                    radial wind (±1,2,4,6,8,10,15,20 ms-1 gray)                               radial wind (±1,2,3,4,5,… ms-1, gray) 
                                              θe (K, shaded)                                                                        Refl. (dBZ, shaded) 
                   

DSL = Downshear-left   USL = Upshear-left   USR = Upshear-right   DSR = Downshear-right 



Summary 
Relative to the radar-based study of Reasor et al. (2013), the 
composite analysis of shear-relative hurricane structure from 
the 2012 HWRF baseline model reveals: 
 

 Lower (normalized) vorticity outside the RMW, but a 
greater radial gradient of vorticity there 

 Greater tilt of the core, on average, but still a preference 
for a downshear-left orientation 

 Composite eyewall ascent that is more sloped than from 
observations  

 A core-region kinematic asymmetry that is broadly 
consistent with observations. The pattern of core-region 
descent and the low-level flow/thermo. structure require 
further investigation. 



Future Work 

Include a greater number of storm cases to increase the 
diversity of the sample. 
 

Extend HWRF diagnostic analyses to a larger domain, 
and focus more on processes involved in shear-induced 
intensity change (e.g., transport of low-θe air into HBL). 
 

Recommendations:  
1) Test existing and future configurations of the HWRF 

model within this shear-relative diagnostic 
framework to ensure consistency with observations. 

2) Use the extended HWRF diagnostic analyses to guide 
future sampling of observed sheared hurricanes. 
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