Basin-wide HWRF Modeling System with Multiple Movable Nests

--A pathway toward operational implementation

Xuejin Zhang (UM/CIMAS) Thiago Quirino (AOML/HRD)

Collaborators: AOML/HRD modeling group NCEP/EMC HWRF Team Da-lin Zhang UMD/AOSC

Acknowledgement: This research funded by NOAA/HFIP (NOAA Award: NA12NWS4680007)

Prepared for HFIP AO annual review, 5 June 2013

Objectives

- Improve both TC track and intensity predictions within the scope of the HWRF operational system for seamless transition to operation
- Enhance structure and rainfall predictions critical to landfall and post-landfall application
- Improve storm-storm/multi-scale interactions
- Provide an alternative pathway for stormoriented satellite and vortex data assimilation within HWRF system
- Explore application for extended TC track and intensity forecasts (up to 7 days) and genesis

Approaches

- Develop multiple movable nested system to follow multiple storms within HWRF model
- Initialize each storm independently with common environmental circulation (localized vortex initialization)
- Explore storm-oriented parallel integration

Current Operational HWRF

• Mass points imes Wind points

Single Moving Nest

- Mediate domain follows the inner most domain
- Nest following centroid MSLP/dynamic pressure minima

Modeling system

- Real and idealized case framework
- Flexible physics configuration
- Nest Initialization

• DA

Operational implementation

- Dynamic setup for forecast domain based storm position
- Single storm forecast
- Partial cycling (vortex cycling only)
- One-way hybrid DA

<u>Research and operational communities now</u> <u>successfully share common repository and directly</u> <u>work together under HFIP</u>

New Functionality

Multiple movable, two-way interactive nests following multiple storms in the upgraded HWRF system

Problem: busy day in tropics

Forecast Problem

Credit to EMC HWRF webpage http://www.emc.ncep.noaa.gov/gc_wmb/vxt

Progress Report 1 Retrospective & Real-time Forecasts

- Cycles start from 00Z 05/19/2012 to 00Z 11/04/2012
- Real-time test: Isaac (37 cycles); Sandy (33 cycles)
- Web products:
 - 3 categories (27km environment; 3km moving nest; multi-model)
 - 20 products

https://storm.aoml.noaa.gov/basin

Track error (Atlantic 01-19)

Track error (East Pacific 01-17)

Basin Scale HWRF: Hurricane Sandy Prediction

Improved Scale Interactions and Improved Track and Size Forecasts (25/18Z prediction)

Shading: T at 500 hPa; Contour: GHT at 500 hPa Vector: Flow averaged between 500 hPa and 200 hPa (credits to Dr.Hua Chen, AOML/HRD/NRC)

Basin Scale HWRF: Isaac-Ileana-Kirk real-time 3-km predictions

Improved tracks and structure, improved rainfall predictions

Isaac Rainfall:192 h QPF forecast

Isaac Rainfall: 126 h HWRF Foreca

Hurricane ISAAC09L — 2012—08—27 12Z Total Rain Swath [mm], 0—to—126 hours

Progress Report 2

Flowchart for HWRF Vortex Initialization Implementation

Trigger mechanism

- Decide forecast configuration from tcvital
 - Number of storms
 - Priority storm if number of storms more than four
 - Forecast length (Need genesis forecast product)
- Set up domain location
- Prepare vortex initialization domains
- Allocate resources (disk space, CPUs, running time, and post-processing resource)

Progress Report 3 Parallel Basin-scale HWRF

- Issues
 - Sequential integration of multiple high-resolution nests (Slow)
 - Limited scalability
- Solutions
 - Parallel high-resolution nests of each storm
- Technical roadmap
 - Use P-threads to integrate multiple nest-pairs in parallel
 - Free OpenMP to be used to further speed up model code
 - Make integration related routines and MPI calls thread-safe
 - Make RSL thread safe to support parallel halo updates by multiple domains
 - Synchronize/sequentialize access by multiple domains to nonthread safe code:
 - Avoid bottlenecks imposed by existing multi-threaded MPI implementations
 - Provides a mechanism for progressive code parallelization without the need to modify every routine in the model to achieve any speed gains
 - Example: Synchronized access to I/O, forcing, and feedback routines

The basin-scale HWRF system

Basin-scale HWRF Configuration Test

	Number of Nest Domains	Wall Clock Time (original)	Wall Clock Time (New)	CPUs
27 km	No	~50 mins		196
27-9-3 km	2 (1 storm)	~137 mins	~137 mins	196
27-9-3 km	4 (2 storms)	~256 mins	~213 mins	196
27-9-3 km	4 (2 storms)	Not scalable	~150 mins	376
27-9-3 km	6 (3 storms)	~363 mins		196
27-9-3 km	8 (4 storms)	~430 mins		196

Current code is scalable and shows huge potential for transition to operation. More resource is required for further speed-up and testing.

Basin-scale Model Configurations

	2013 HWRF Operational	Basin-scale Model (Stream 2)		
Domain	27 KM: 77.76° X 77.76° 9 KM: 10.56° X 10.2° 3 KM: 6.12° X 5.42°	27 KM: 178.20° X 77.58° 9 KM: 10.56° X 10.2° 3 KM: 6.12° X 5.42°		
Vortex Initialization	Modified Vortex Initialization at 3 KM and Hybrid DA	Modified Vortex Initialization at 3 KM and GSI DA		
Cycling	Yes (9-3 km vortex only)	Yes (cycle 9-3 km vortex each storm)		
Ocean Coupling	27-9 KM: Yes 3 KM: No, Downscaled	No		
Physics schemes				
Microphysics	Modified Ferrier (High-Res)	Modified Ferrier (High-Res)		
Radiation	GFDL GFDL			
Surface	GFDL (High_res)	GFDL (High_res)		
PBL Scheme	<u>2012 GFS (High_res)</u>	<u>2012 GFS (High_res)</u>		
Convection	<u>SAS (High-Res), No CP (3 KM),</u> Shallow Convection	SAS (High-Res), No CP (3 KM), Shallow Convection		
Land Surface	GEDI Slah	GFDL Slab		
	GFDE Slab			

Summary of work accomplished

- Completed movable nests for multiple storms
- Implemented 2013 HWRF upgrade to basinscale modeling system
- Implemented localized vortex initialization for multiple storms and cycling
- Accelerated code efficiency

Ongoing work

- Integrated system testing through retrospective cases (2012 season)
- Implement new parallel algorithm to 2013 HWRF model
- Efficiency and scalability testing
- Run system in real-time for 2013 season (Stream 2 advancement)
- Production and dissemination

Challenges

- Further optimize the code to meet the operational time requirements
- Urgent need of computing resource during the season to demonstrate on-going advancements

Conclusion

- Development of the integrated modeling system is completed and the system is showing great promise for transitions
- Intensity and structure verifications are on going for the retrospective runs
- Forecast efficiency will be critical to the pathway toward operational implementation