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Executive Summary

This technical report describes the activities and results of the Hurricane Forecast Improvement Program
(HFIP) occurred in 2019. The major development focus in 2019 was on building the next generation
Hurricane model - Hurricane Analysis and Forecast System (HAFS), primarily for track and intensity
predictions. This report will summarize the progress in 2019 including model developments and first year of
progress made towards transforming into the next generation of HFIP.

In general, the 2019 hurricane season was not as busy as 2016-2018, yet it was a very challenging year for
the numerical models. There were eighteen named storms formed, of which six developed into hurricanes,
with three major hurricanes, Dorian, Humberto and Lorenzo. There were 93 occurrences of Rapid
Intensification (RI) events as observed in best-track data.

The major highlights of 2019 were:

L.

The Hurricane Weather and Research Forecasting (HWRF) model was upgraded to run at a
horizontal resolution of 1.5 km near the storm region in 2018. This made HWRF the highest
resolution hurricane model ever implemented for operations in the National Weather Service
(NWS). However, due to the NCEP Central Operations (NCO) moratorium, HWRF was not
operationally upgraded in 2019.

In the Atlantic Basin, HWRF had the best intensity skill at all lead times through day 5. In fact,
HWREF had by far the best intensity skill of any dynamical model on day 3 and later, and only
SHIPS had slightly better intensity skill than HWRF on day 4. In the west Pacific basin,
Operational HWRF had the best intensity performance for all lead times. In the East Pacific basin,
operational HWRF had the best intensity skill until day 2, and unusually high intensity errors
beyond day 3. In the East Pacific, HWRF had good track skills for all lead times. However, in the
Atlantic basin, HWRF had unusually large track errors very likely due to Hurricane Dorian.

In the Atlantic basin, track errors for Hurricanes in a Multi-scale Ocean-coupled Non- hydrostatic
(HMON) model were comparable to HWRF. Both in the Atlantic basin and East Pacific basins,
HMON had large intensity errors beyond Day 2 and extended lead times.

The basin-scale HWRF, a major HFIP investment that was continuously run in parallel under
Stream 2, showed better skills in both track and intensity forecasting and was as successful as the
operational HWRF for most of the Atlantic hurricanes in 2019. The HWRF-B moving nests are
foundational for the development of National Oceanic and Atmospheric Administration (NOAA)’s
FV3-based, next generation hurricane forecast system.

One of the major accomplishments for the season was the advancement and real-time testing of two
basic configurations of FV3-based, NOAA’s next-generation Hurricane Analysis and Forecast
System (HAFS)- (i) high resolution regional stand-alone regional mode (HAFS v0.A) and; (ii)
global model with a high resolution nest mode (HAFS v0.B). The results from the baseline versions
demonstrated initial success of the model. During Hurricane Dorian, both HAFS v0.A and v0.B
consistently followed the best track and more accurately predicted the right turn before the coasts of
Florida.

Hurricane Dorian was particularly the most challenging case in the 2019 season. Most of the
operational models did not accurately predict the track and intensity forecast. Nevertheless, HFIP
stream 2 experimental models (HAFS v0.A & v0.B) came closest in predicting the track forecast.
However, the major RI events were missed by most of the models. Guidance did not show
strengthening of Dorian to its peak intensity of 160 kts within 24 hours. Rapid Intensification (RI)
predictions continue to be a challenge for HAFS as well.



7. Supported by the NOAA Hurricane Supplemental projects, accelerated developments of HAFS are
ongoing. These developments include high-resolution, telescoping two-way interactive moving
nests, model physics to support high-resolution prediction, hurricane inner core data assimilation
techniques, regional ensembles and products to support probabilistic forecasts. All developments
are being seamlessly merged into the Unified Forecast System (UFS) developments.

8. Under the Weather Research and Forecasting Innovation Act including Sect. 104, HFIP will
continue to address the goals of further reducing track and intensity forecast errors by 20% within
5 years and 50% within 10 years and to extend forecasts out to 7 days, particularly with focus on
RI guidance. In addition, the updated plan extends HFIP’s purview to improving guidance on
predicting storm structure and all hurricane hazards (surge, rain, associated severe weather, gusts
as well as sustained winds) at actionable lead times for emergency managers (e.g., 72 hours).
While significant progress were made, especially track and intensity predictions using the HWRF
system, further improvements are necessary. The HAFS system is expected to address those new
HFIP goals.



1. Introduction

This report describes the Hurricane Forecast Improvement Program (HFIP), its goals, proposed methods
for achieving those goals, and recent results from the program, with an emphasis on recent advances in
the skill of operational hurricane forecast guidance. The first part of this report is very similar to previous
versions of the annual report, since it basically describes the background of the program. This year’s
version focuses upon capturing state-of-the-art HFIP modeling accomplishments during 2019’s hurricane
season, development of Hurricane Analysis and Forecasting System (HAFS), progress on the Rapid
Intensification (RI) metrics, and future plans. For more background information, readers are referred to
earlier reports available at: http://www.hfip.org/documents/.

2. The Hurricane Forecast Improvement Program (HFIP)

Twenty-seven named tropical storms and thirteen hurricanes crossed US coastlines from 2000-2010. The
Hurricane Forecast Improvement Program (HFIP) was established within NOAA in June 2007, in
response to particularly damaging hurricanes (e.g., Charley, 2004; Wilma, Katrina, Rita, 2005) in the first
half of that decade. HFIP’s 5-year (for 2014) and 10-year goals (for 2019) are:

e Reduce average track errors by 20% in 5 years, and by 50% in 10 years for days 1-5.

e Reduce average intensity errors by 20% in 5 years, and 50% in 10 years for days 1-5.

e Increase the probability of detection (POD)' for RI to 90% at Day 1, decreasing linearly to 60%
at day 5, and decrease the false alarm ratio (FAR) for rapid intensity change to 10% for day 1,
increasing linearly to 30% at day 5. [The focus on RI change is the highest-priority forecast
challenge identified by the National Hurricane Center (NHC)].

e Extend the lead-time for hurricane forecasts out to Day 7 (with accuracy equivalent to that of the
Day 5 forecasts when those were introduced in 2003).

HFIP provides the unifying organizational infrastructure and funding for NOAA and other agencies to
coordinate the hurricane research needed to achieve the above goals, improve storm surge forecasts, and
accelerate the transition of model codes, techniques, and products from research to operations. HFIP
focuses multi-organizational activities to research, develop, demonstrate, and implement enhanced
operational modeling capabilities, dramatically improving the numerical forecast guidance made available
to the NHC. Through the HFIP, NOAA continues to improve the accuracy of hurricane forecasts, with
applied research using advanced computer models.

In 2017, Congress passed the Weather Research and Forecasting Innovation Act including Section 104.
Hurricane Forecast Improvement Program, instructing NOAA to maintain a project to improve hurricane
forecasting with the goal of developing and extending accurate hurricane forecasts and warnings in order
to reduce loss of life, injury, and damage to the economy, with a focus on improving the prediction of
rapid intensification and track of hurricanes; improving the forecast and communication of surges from
hurricanes; and incorporating risk communication research to create more effective watch and warning
products. In response to this charge, the HFIP strategic plan was updated outlining the research and
development needed to continue improving hurricane forecast guidance, enhance probabilistic hazard
products, and design a more effective tropical cyclone product suite to better communicate risk to the
public and emergency management community. Under the updated plan, HFIP will continue to address
the original goals of reducing track and intensity forecast errors by 20% within 5 years and 50% within 10
years, and to extend forecasts out to 7 days, particularly with focus on rapid intensification guidance. In
addition, the updated plan extends HFIP’s purview to improving guidance on predicting storm structure

1POD is equal to the total number of correct RI forecasts divided by the total number of forecasts that should have indicated RI: number of
correctly forecasted + (correctly forecasted RI+ did not but should have forecasted RI). False Alarm Ratio (FAR) is equal to the total number of
incorrect forecasts of RI divided by the total number of RI forecasts: forecasted RI that did not occur + (forecasted RI that did occur + forecasted
RI that did not occur).
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and all hurricane hazards (surge, rain, associated severe weather, gusts as well as sustained winds) at
actionable lead times for emergency managers (e.g., 72 hours). Improved hazard guidance will derive
from dynamical model ensembles enabling probabilistic hazard products and improved track, intensity
change and structure (radii to maximum and 35-knot winds) predictions before formation and throughout
the storm’s life cycle. Using social science research, HFIP will design a more effective tropical cyclone
product suite to better communicate risk and transition all current tropical hazards products.

One of the key strategies defined in the revised hurricane forecast improvement strategic plan in response
to the proposed framework for addressing Section 104 of the Weather Research Forecasting Innovation
Act of 2017, is to advance an operational Hurricane Analysis and Forecast System (HAFS) at
NOAA/National Weather Service (NWS). HAFS will be a multi-scale model and data assimilation
package capable of providing analyses and forecasts of the inner core structure of the TC out to 7 days,
which is key to improving size and intensity predictions, as well as the large-scale environment that is
known to influence the TC's motion. HAFS will provide an operational analysis and forecast system out
to 7 days for hurricane forecasters with reliable, robust and skillful guidance on TC track and intensity
(including RI), storm size, genesis, storm surge, rainfall and tornadoes associated with TCs. It will
provide an advanced analysis and forecast system for cutting-edge research on modeling, physics, data
assimilation, and coupling to earth system components for high-resolution TC predictions within the
outlined Next Generation Global Prediction System (NGGPS)/Strategic Implementation Plan (SIP)
objectives of the Unified Forecast System (UFS). HAFS is supported under several Hurricane
Supplemental projects, (i) 1A-4a: Accelerate Development of Moving Nest for HAFS; (ii) 3A-1:
Accelerate implementation of the updated HFIP Plan; and (iii) 3A-2: Accelerate Re-engineering of
HAFS.

HFIP is organized along two lines of activities: Stream-1 and Stream-2. While Stream-1 works within
presumed operational computing resource limitations, Stream-2 activities assume that resources will be
provided to increase the available computer capability in operational settings, above the one that is
already planned for the next five years. The purpose of Stream-2 is to demonstrate that the application of
advanced science, technology, and increased computing will lead to the desired increase in accuracy, and
other improvements in forecast performance. Because the level of computing necessary to perform such a
demonstration is larger than can be accommodated by current operational computing resources, HFIP
developed its own computing system at NOAA’s Earth System Research Laboratory (ESRL) in Boulder,
Colorado. For instance, in the 2019 season, an advanced version of Hurricane Weather and Research
Forecasting (HWRF) model, called the Basin-Scale HWRF, and two preliminary versions of HAFS were
tested near real-time in Stream 2 (see section 8 for results).

3. The HFIP Baseline for measuring progress

To measure progress towards the above-defined HFIP goals, a baseline level of accuracy was established.
The HFIP goals were to reduce track and intensity errors by 20% in 5 years and 50% within 10 years. A
set of baseline track and intensity errors were developed by NHC, where the baseline is the consensus
(average) from an ensemble of top-performing operational models evaluated over the period of 2006-
2008 for the Atlantic basin. For track, the ensemble members were the operational aids GFSI, GFDI,
UKMI, NGPI, GFNI, and EMXI, while for intensity the members were GFDI, DSHP, and LGEM?
(Cangialosi, June 2020). Results from HFIP model guidance are then compared with the baseline to
assess progress. Figure 1 shows the mean absolute errors of the consensus over the period 2006-2008 for
the Atlantic basin. A separate set of baseline errors (not shown) was computed for the eastern North
Pacific basin (Franklin, 2009, 2010).

2 See appendix A for details on operational aids (GFSI, GFDI, UKMI, NGPI, GFNI, EMXI,GFDI, DSHP, LGEM)
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To provide a more representative, longer-term perspective, the progress of HFIP models are also
evaluated in terms of forecast skill. Because a sample of cases from a season might have a different
inherent level of difficulty from the baseline sample of 2006-2008 (for example, because it had an
unusually high or low number of rapidly intensifying storms), it is helpful to evaluate the progress of the
HFIP models in terms of forecast skill as well as error. Here, that evaluation is determined with the
percent improvement, relative to a statistical model for the same cases. A statistical model is one where a
number of predictors are combined, using weights that are determined by correlation with past data and,
consequently, performs better in relatively ‘easy-to-predict’ seasons, and worse in relatively ‘difficult-to-
predict’ seasons. Figure 1 shows the skills of the baseline, baseline errors, and the 5- and 10-year goals -
represented in blue and labeled on the right side of the graph. The goals are presented as the percentage
improvement over the Decay-(Statistical Hurricane Intensity Forecast) SHIFORS and (Climatology and
Persistence) CLIPERS forecasts, for the same cases that were used to determine the mean absolute
baseline error.
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Figure 1: (a) Track and (b) Intensity Error Baseline and Goals, where the forecast errors are represented by black lines
labeled on the left side of the graph, and the forecast skill is represented by blue lines labeled on the right side of the
graph. Solid black lines represent baseline forecast errors, while solid blue lines represent baseline forecast skill. The 5
and 10 years goals are represented by dashed black lines for errors, and dashed blue lines for skill.

The skill baseline and goals for intensity at all lead times are roughly constant, with the baseline
representing a 10% improvement over Decay-SHIFORS, and the 5- and 10-year goals representing 30%
and 55% improvements, respectively. It’s important to remember, however, that normalization by
CLIPER or (especially) Decay-SHIFORS can fail to adequately account for forecast difficulty in some
circumstances. A hurricane season that features extremely hostile environmental conditions will lead to
very high Decay-SHIFOR intensity forecast errors (as climatology will be a poor forecast in such years),
but relatively low errors in dynamical models and NHC official forecasts (as few storms will intensify
rapidly, making it less challenging for both models and forecasters). This combination of baseline and
model errors yields an unrealistic skill estimate. Hence, both skill and absolute errors are used to measure
HFIP model improvements.

It is also important to note that HFIP performance baselines were determined from a class of operational
aids known as “early” models. Early models are those that are available to forecasters early enough to
meet forecast deadlines for the synoptic cycle. Nearly all the dynamical models currently used at tropical
cyclone forecast centers, such as the Global Forecast System (GFS) and HWRF models, are considered
“late” models because their results arrive too late to be used in the forecast for the current synoptic cycle.
For example, the HWRF run for 12:00 Coordinated Universal Time or Zulu Time Zone (Z) does not
become available to forecasters until around 16:00Z, whereas the NHC official forecast based on the
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12:00Z initialization must be issued by 15:00Z, one hour before the HWRF forecast can be viewed. It’s
actually the older, 06:00Z run of the HWRF model that would be used as input for the 15:00Z official
NHC forecast, through a procedure developed to adjust the 06:00Z model run, to match the actual storm
location and intensity at 12:00Z. This procedure also adjusts the forecast position and intensity at some of
the forecast times as well, and then applies smoothing to the adjusted forecast. This adjustment, called an
“interpolation” procedure, creates the 12:00Z “early” aid HWRF with 6-hour interpolation (HWFI) that
can be used for the 15:00Z NHC forecast. Model results so adjusted are denoted with an “I” (e.g., HWFI).
The distinction between early and late models is important in assessments of model performance provided
in subsequent sections, since late models have an advantage of more recent observations/analysis than
their early counterparts.

4. The HFIP Model Systems

Accurate TC forecasts beyond a few days require a global domain, because influences on a forecast at a
particular location can come from weather systems elsewhere, far from the particular location. Fig. 2a
shows the steep-step improvements to track predictions since the 60’s. Those advancements have come
through developing improved dynamical global models (e.g., GFS), further improving resolution and
physics in those models, and through advancing DA techniques. Most of the GFS developments have
been at the National Center for Environmental Prediction (NCEP). Nevertheless, one of the first efforts in
HFIP was to improve the existing operational global models. Early in the program, it was shown that
forecasts were improved, particularly in the tropics, by using a more advanced DA scheme than the one
employed operationally at that time. A version of this advanced DA went operational in the GFS model in
May, 2012. However, TCs like Sandy (2012), Joaquin (2015), and early forecast cycles of Florence
(2017) continue to pose challenges to track prediction. Sustained HFIP research and development may be
necessary for further improvements in track prediction of these outlier events.

NHC Odfficial Average Track Errors NHEC Official Average Intensity Errors
Atlantic Basin Troplcal Storms and Hurricanes

Atlantic Basin Tropical Storms and Hurricanes
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While significant track improvements have been achieved since the 60’s, Figure 2b illustrates little or no
improvement in the accuracy of NHC’s official intensity forecast, until the onset of HFIP in 2009. Part of
the problem was inadequate model-grid resolution. It is generally assumed that the hurricane inner core
(i.e., the eye-wall region) must be resolved, to see consistently accurate hurricane intensity forecasts
(NOAA SAB, 2006). It is believed that the best approach to improve hurricane track and intensity
forecasts involves the use of high-resolution global models, with at least some being run as ensembles.
However, global models and their ensembles are likely to be limited by computing capability, for at least
the next five years, to a horizontal resolution no finer than about 8-10 km, which is inadequate to resolve
the inner core of a hurricane. Maximizing improvements in hurricane intensity forecasts will, therefore
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require high-resolution regional models, or global models with moveable high-resolution nests, perhaps
also run as an ensemble. During the last 10 years, the focus has been on improving intensity forecast,
which for decades has significantly lagged behind track forecast. For that purpose, regional models with
(two-way interactive) moving nests capable of resolving the inner core structure of hurricanes are usually
used for intensity predictions. The domains of the hurricane regional models are usually larger than their
CONUS counterparts. The HWRF and HMON that were developed during HFIP are prime examples.
Track predictions from these regional models, especially HWRF, have been shown to improve, with
larger domains (Zhang et. al., 2016; and Alaka et. al., 2017). The Basin-Scale HWRF has demonstrated
the usefulness of expanding the regional domain for TC predictions and paving the way towards the
advancements of Global-to-local scale HAFS. The envisioned Global nests embedded in the FV3 based
HAFS, under development, is shown in the cover picture.

5. Operational HWRF and HMON systems (Stream 1)
a. HWREF System

One of the major accomplishments of HFIP has been the development of the storm-following, double-
nested, high-resolution, HWRF model, and its transition to operations. A joint development between
NOAA research and operations, with significant support from the Developmental Testbed Center (DTC),
UCAR, and the community, HWREF is one of the top-performing track prediction models, and is paving
the way to improve operational intensity forecasts all over the globe. The HWRF model is based on the
Non-Hydrostatic Mesoscale Model on an E-grid (NMME) dynamic core, and is coupled to Princeton
Ocean Model (POM) and HYbrid Coordinate Ocean Model (HYCOM). It is a part of the WRF
infrastructure, but using NMME dynamic core (Biswas et al., 2018; Tallapragada et. al., 2014).
Improvements to model nesting, resolution (3 km in 2012, 2 km in 2015, and 1.5 km in 2018), physics,
and initial conditions enhanced with aircraft observations - all coordinated under HFIP - have led to
progress in improved numerical guidance.
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Figure 3: (a) HWREF intensity skill relative to Decay-SHIFOR for the 2011-2019 Atlantic seasons; (b) HWRF Track skill
relative to CLIPERS for 2011-2019 Atlantic seasons.

Figure 3a portrays the progress of HWREF in forecasting intensity, measured in terms of skill relative to
Decay-SHIFOR. Through 2011, HWRF was operating with a single 9 km-resolution moving nest that
could automatically track hurricanes (Gopalakrishnan et. al., 2006). In the next eight years (2012-2019),
the HWREF system was upgraded considerably under HFIP year after year.

e In 2012, for the first time, the double-nested, cloud-resolving version of HWRF was run at 3 km
horizontal resolution (27/9/3 km version) with improved physics based on observations
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(Gopalakrishnan et. al., 2011; Gopalakrishnan et. al., 2012; Gopalakrishnan et. al., 2013;
Goldenberg et. al., 2015).

In 2013, upgraded physics and vortex initialization were adopted.

In 2014, HWRF was run in real-time in all global basins beyond the North Atlantic.

In 2015, HWRF implementation consisted of increased horizontal resolution from 27/9/3 km to
18/6/2 km across all domains, continued improvement of the Nest-Tracking-Algorithm, advanced
vortex initialization, and improved products.

The year 2016 was the watermark year for 5-year improvements. New SAS and GFS-EDMF
physics suites were implemented during this year.

Supported by HFIP, a dramatically improved DA system was implemented in operational HWRF
in 2017 (shown in Fig. 3a).

In 2018, the HWRF implementation incorporated a further increment of the horizontal resolution,
from 18/6/2 km, to 13.5/4.5/1.5 km, as well as continued improvement of the Nest-Tracking-
Algorithm, and advanced vortex initialization.

With the 2018 upgrade in model resolution, the HWRF model is now the highest resolution
hurricane model ever implemented for operations in the NWS.

However, due to the NCEP Central Operations (NCO) moratorium, HWRF was not operationally
upgraded in 2019.

Clearly, steep-step progress is being made under the HFIP with every yearly upgrade. HWRF had
improved by about 40-60% from 2011-2018 (Fig. 3a). In fact, HWREF is the main driving dynamical
model of the Real-Time HFIP Corrected Consensus Approach (HCCA) for TC Intensity Guidance at
NHC (Simon et. al., 2018), and has become the flagship intensity prediction tool for hurricane forecasting
at NWS. However, it should be noted, outlier events continue to impact HWRF performance from year to
year. In 2019, Hurricane Dorain was a challenging forecast. In fact, HWRF performance slightly
degraded in 2019 in terms of intensity skill when compared to 2018 (HFIP Annual Report, 2019) likely
due to the challenging storms coupled with lack of model upgrades. However, HWRF was the best
dynamical model for the intensity forecast over the Atlantic.

Figure 3b illustrates the track forecast skill relative to CLIPER from the HWRF system from 2011 to
2019. Although HWRF was initially developed for improving intensity guidance, the model is also used,
complementary to the GFS, for providing track forecasts, as well. Track performance from HWRF has
been constantly improving since 2011 until 2018 (Fig. 3b). However, as mentioned earlier, Dorian was a
very challenging storm for HWRF in 2019. Substantial degradation of nearly 20% (HFIP Annual Report,
2019) was noted partly due to Hurricane Dorain. The parent GFS that drives the initial conditions was
upgraded to FV3 core and that could influence the larger scales significantly in any regional models.
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In the Western Pacific basin, Operational HWRF has the best intensity performance at all lead times.
HWREF intensity performance was exceptional along with COAMPS-TC (Fig. 4a). HWREF track forecast

was the second best only behind GFS at all lead times and outperformed the COAMPS-TC at longer lead
times (Fig. 4b).

b. HMON System

Hurricanes in a Multi-scale Ocean-coupled Non-hydrostatic model (HMON) was developed to provide
higher-resolution intensity and track forecast guidance to NHC, along with HWRF. HMON replaced the
legacy (hydrostatic) Geophysical Fluid Dynamics Laboratory (GFDL) hurricane model, being 2-way
coupled to HYbrid Coordinate Ocean Model (HY COM), which was used as the second dynamical model
along with HWRF for intensity guidance until 2016. The HMON model is based on the Non-Hydrostatic
Mesoscale Model on a B grid (NMMB) dynamic core, which is currently being used in NCEP operational
systems - the North American Mesoscale (NAM) Model and the Short Range Ensemble Forecast (SREF)
model. The HMON was built using shared infrastructure with unified model development within the
NOAA Environmental Modeling System (NEMS), and could also be coupled with other (ocean, wave,
land, surge, inundation, etc.) models, within the NEMS infrastructure. Use of NEMS also paves the way
for future use of physics packages like CCPP (Common Community Physics Package). HMON has been
in operations for three hurricane seasons since 2017, and has demonstrated forecast consensus
improvement.

c. Challenging Case of Hurricane Dorian

(a) (b) TC Tracks (c) TC Tracks
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Figure 5: Challenging forecast of Tropical Cyclone Dorian (a) Observed track and cones indicating the different phases
where the operational models struggled example of (b) track forecast from various operational models during the initial
phase and (c) track and intensity prediction during the second phase where Dorain rapidly intensified and made landfall
in Bahamas.

The Atlantic Hurricane Dorian was a forecasting challenge of the 2019 season. Dorian was formed on
August 24, 2019 from a tropical wave in the Central Atlantic, and gradually strengthened as it moved
toward the Lesser Antilles, becoming a hurricane on August 28, 2019. Rapid intensification occurred, and
on August 31, Dorian became a Category 4 hurricane. On September 1, Dorian reached Category 5
intensity, with maximum sustained winds of 185 mph, and a minimum central pressure of 910 mb while
making landfall in Elbow Cay, Bahamas. Dorian made another landfall on Grand Bahama several hours
later. The ridge of high pressure steering Dorian westward collapsed on September 2, causing Dorian to
stall just north of Grand Bahama for about a day. It is the strongest known tropical system to affect the
Bahamas. A combination of cold water upwelling and an eyewall replacement cycle weakened Dorian to a
Category 2 hurricane on the next day. On the morning of September 3, Dorian began to move slowly
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towards the north-northwest. Dorian subsequently completed its eyewall replacement cycle and moved over
warmer waters, regaining Category 3 intensity by midnight on September 5. In the early hours of September
6, Dorian weakened to Category 1 intensity as it picked up speed and turned northeast. Dorian would pick
up speed and move northeast along the North Carolina coast September 6, moving just south of the Crystal
Coast, clipping Cape Lookout and eventually making landfall at Cape Hatteras.

Figure 5 summarizes the complexity in Dorain’s prediction and some of the model errors associated with
track and intensity forecasts. The three cones in Figure Sa approximately indicate the behavior of the
forecast models during different phases described above and the black line shows the actual track. The early
forecasts showed the storm would stay weak and pass near or over Puerto Rico and/or Hispaniola. In reality,
the center very likely re-developed further northeast (Avila et. al., 2020), and the observed track was outside
the track forecast spread of operational models (Fig. 5b). The following forecasts had track as well as
intensity forecast errors (Fig. 5c). None of the operational models, HWRF, HMON, SHIPS could forecast
the RI predictions in several cycles, very likely due to large position errors. There were phase errors in
many of these forecasts from numerical models, as well. For instance, when the storm stalled for 48 hours
near the Bahamas, HWRF showed several cycles making landfall near West Palm Beach Florida. The
following phase of rapid weakening and moving northeast along the North Carolina coast was not well
captured by HWREF. This single storm accounted for a significant portion of the degradation in HWRF
performance in the 2019 season. Nevertheless, as seen later, HFIP experimental systems, especially HAFS
provided improved track forecast showing promise in NOAA’s next generation effort.

6. Operational Hurricane Guidance Improvements

The 2019 Atlantic hurricane season was not as busy as 2016-2018. There were eighteen named storms
formed, of which six developed into hurricanes, with three major hurricanes, Dorian, Humberto and
Lorenzo. Dorian impacted the northern Bahamas as a category 5 hurricane producing catastrophic wind and
surge damage while Hurricanes Humberto and Lorenzo affected Bermuda and the Azores, respectively.
Hurricane Barry, a category 1 hurricane, affected the U.S. by making landfall.

NHC uses several deterministic guidance models for their official intensity forecasts, including NCEP’s
HWRF and HMON regional dynamical models, several global models, and the D-SHIPS and LGEM
statistical models. The dynamical models are not available in time to be used by the NHC forecasters so a
method to interpolate the predictions from the previous forecast cycle has been developed. The
interpolated versions are called early models. In all of the discussion below, only early models are
considered. Several consensus intensity models are also used as input to the NHC forecast. The simplest
is IVCN, which is a linear average of the D-SHIPS and LGEM statistical models and the early versions of
the HWRF, HMON regional models. [IVCN runs when two or more of the above models (HWREF,
HMON, D-SHIPS and LGEM) are available. We use IVCN as the basis for performance measures for RI
predictions this year instead of individual model guidance from HWRF and HMON (section 6¢).

a. Track Guidance

In 2019, official Atlantic track forecasts (Fig. 6a) were very skillful and close to the best-performing
consensus aids - FSSE, HCCA and TVCA (Cangiolosi, 2019). EMXI was the best dynamical mode, but
not as good as the NHC forecasts or consensus models. EGRI was the second best model, followed by
AEMI and GFSI. NVFI, HMNI and HWFTI trailed off.

In the eastern Pacific (Fig.6b), the consensus aids HCCA and TVCE led the way with the highest skill.
NHC official forecasts were very good but a little less than the consensus models in the short term. EMXI
was the best individual model, but less skill than the official forecast and consensus models. AEMI was
close to, but not quite as good as, EMXI. EGRI was a strong performer through 96 h, with a second place
model. GFSI, HWFI, HMNI were in the middle of the pack, just behind the best individual model. NVGI
was completely trailed off.
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Figure 6: Official track forecast skill in 2019 for the (a) Atlantic (left) and (b) eastern Pacific (right) basins. Numbers
immediately above the X-axis show the total number of cases covered by each data point.

b. Intensity Guidance

Intensity forecast verifications for the 2019 season are shown in Fig. 7. In the Atlantic basin (Fig. 7a),
official forecasts were very skillful near the consensus aid. Among the consensus models, HCCA was the
best model from 12h to 48h, while FSSE performance was best from 72h to 120h. HWFI was a strong
performer, the best individual model at most lead times. HMNI was competitive with HWFI early, but
trailed off after 48h. DSHP and LGEM were fair performers, but not as good as HWFI and consensus
models. GFSI and EMXI had some skill, but not competitive with the remainder of the guidance.
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Figure 7: Official intensity forecast skill in 2019 for the (a) Atlantic Basin (left) and (b) East Pacific Basin (right).

In the eastern Pacific (Fig. 7b), official intensity forecast performance was better than the guidance early
but not quite as good as the consensus aids. There were no skills at 96h and 120h. IVCN, FSSE, and
HCCA started as best models early, but trailed off at longer lead times. HWFI was a strong performer
through 48 h, but skill dropped off sharply after that. DSHP and LGEM were the only models that were
skillful throughout and were best at 96h and 120h. GFSI and EMXI were not very skillful early, but had
better guidance at the long leads. Many of the TCs over the eastern Pacific were short lived and posed a
challenge to all models. (Cangiolosi, 2020).
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¢. Rapid Intensification/Weakening Prediction

One of the HFIP goals is to “reduce intensity forecast guidance errors by 50% for RI events”. A number
of specific options consistent with this language had previously been proposed, including one that was
discussed in the 2018 HFIP Annual Report. After further discussion over the past year, however, a
different proposal for measuring progress toward forecasting RI has been adopted. The new HFIP RI
performance metric, baseline, and some preliminary results are discussed below.

The new metric is, the mean absolute error (MAE) of the IVCN consensus, for the Atlantic and eastern
Pacific basins combined, evaluated for only those verification times when RI was either ongoing or was
forecast. Specifically, this means the verifying time must satisfy at least one of the following criteria:

1. A 30-kt or larger intensity increase in the best-track intensity, relative to the best-track intensity
24-h prior to the verification time.

2. A 30-kt or larger forecast intensity increase in any of the IVCN member models, relative to the
forecast intensity 24-h prior to the verification time.

With this as the metric, HFIP then defined the baseline sample as those 24-, 36-, 48-, 72-, 96-, and 120-hr
forecasts satisfying the above criteria for the combined Atlantic and eastern Pacific basins over the period
2015-17.

By considering both RI cases occurring in the best track and the RI cases being forecast, the new metric
ensures that overly aggressive models are penalized for false alarms. A full assessment of our ability to
forecast RI requires consideration of false alarms as well as misses, and from an operational standpoint, a
metric that considers both types of errors will be of greater value to forecasters who must gauge the
credibility of a forecast of RI when one is presented to them.

A few additional remarks about the new metric are in order. First, while most HFIP performance
measures have been applied to just the Atlantic basin, the rarity of RI events argued for a combined
Atlantic/eastern Pacific evaluation to increase sample size. Second, because Rl is assessed relative to the
intensity 24-h prior, a baseline was not developed for 12-h forecasts. Finally, we anticipate that non-
consensus forecasts (e.g., HWFI, OFCL) will be evaluated relative to the new RI baseline and target; it’s
hopefully clear that in such cases criteria (2) above would be applied to each of the models forming the
homogeneous sample.

The values of the new RI baseline are presented in Table 1 and Fig. 8. One complication in determining
the baseline values was that the membership of IVCN at any particular forecast time is not recorded
operationally nor readily determined after the fact, and the sample definition depends on checking each
member’s forecast for occurrences of RI. Furthermore, the composition of IVCN changed over the
baseline period 2015-17. For these reasons, the HFIP baseline errors were determined from a single
recomputed version of [IVCN comprising models used in the operational IVCN at any time from 2015-17;
these models were DSHP, LGEM, GHMI, HWFI, and CTCI. It is seen that our ability to predict RI is
only weakly dependent on forecast lead time; the errors are high even at 24 h (26 kt) and saturate quickly.
In terms of skill relative to climatology/persistence, a peak is seen from 72-96 h but skill is minimal
throughout the 5-day forecast period. It’s worth noting that the target MAEs in Table 1 are all large
enough to be observationally detectible, in contrast to the overall (non-RI) intensity targets, which are
small enough that it may be difficult to distinguish them from the best-track uncertainty.
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Table 1. HFIP RI performance measures baseline and target errors. Baseline errors are the mean absolute errors over
the period 2015-17 for the Atlantic and eastern North Pacific for the variable consensus comprising at least two of the
models DSHP, LGEM, GHMI, HWFI, and CTCI. Target errors represent 50% of the baseline errors.

Verification Time (h) Baseline (kt) Target (kt)
24 26.1 13.1
36 28.6 14.3
48 31.4 15.7
72 36.9 18.5
96 31.3 15.6
120 32.1 16.1
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Figure 8: HFIP RI performance measures baseline errors and skill. Baseline errors are the mean absolute errors over the
period 2015-17 for the Atlantic and eastern North Pacific for the variable consensus comprising at least two of the models
DSHP, LGEM, GHMI, HWFI, and CTCI. Skill values are computed relative to OCDS.

Figure 9 shows how the RI intensity metric has performed over the past two seasons (note that 2019
results are preliminary since the season’s best tracks have not been finalized). The consensus forecast
shown here (CONI) is defined as at least two of DSHP, LGEM, HWFI, HMNI, and CTCI — the 2019
composition of IVCN. Results are presented in terms of skill relative to the HFIP RI baseline errors from
Table 1. It is seen that RI forecasts from the consensus were more successful in 2018 than in 2019, and
it’s fair to infer that there will be high year-to-year variability in the performance of this metric, in part
due to the scarcity of RI events. Taking the two years together does show overall improvement over the
baseline of at least 10% through 72 h, where the sample is relatively large. Errors were worse than the
baseline at 96 and 120 h, however. Examination of the individual components of the consensus shows
that LGEM and HMNI were relatively poor performers, while CTCI and HWFI were the models
primarily responsible for the improvements relative to the baseline.
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Figure 9: HFIP RI performance measure for 2018-19, presented in terms of skill relative to the HFIP baseline. CONI is
meant to mimic the 2019 IVCN and comprises at least two of the models DSHP, LGEM, HWFI, HMNI, and CTCIL.
Results for 2019 are preliminary. Number of cases along the bottom of the diagram refers to the combined Atlantic and
eastern Pacific 2018-19 sample.

7. Development of the Hurricane Analysis and Forecast System (HAFS)

The HAFS is NOAA’s next-generation multi-scale numerical model, with data assimilation package and
ocean coupling, which will provide an operational analysis and forecast out to seven days, with reliable
and skillful guidance on Tropical Cyclone (TC) track and intensity (including RI), storm size, genesis,
storm surge, rainfall and tornadoes associated with Tropical Cyclones. The system will be integrated into
the UFS. UFS is a community-based, coupled comprehensive Earth system modeling system based on the
FV3 dynamical core, whose numerical applications span local to global domains and predictive time
scales from sub-hourly analyses to seasonal predictions. It is designed to support the Weather Enterprise
and to be the source system for NOAA's operational numerical weather prediction applications. The
HAFS will be a part of UFS geared for hurricane model applications.

HAFS comprises five major components: (a) High-resolution moving nest (b) High-resolution physics (¢)
Multi-scale data assimilation (d) 3D ocean coupling, and (e) Observations to support the DA.

a. High-resolution moving nest

Central to the development of HAFS is the FV3 dynamical core with an embedded moving nest capable
of tracking the inner core region of the hurricane at 1-2 km resolution (cover picture). Although the FV3
model core itself is fully tested with convection-allowing grid spacing and could be run both as global and
regional models, the current nesting capabilities are very limited, at best to severe weather applications
over CONUS. However, hurricane forecast applications require storm following, telescopic nests at about
1-2 km resolution that can be located anywhere in the globe or in a regional domain and should be
capable of following tropical storms for several days. In addition, unlike for severe weather applications
(eg. CAM), two-way interactive nests are essential for improving the accuracy of TC forecasts. AOML, in
partnership with GFDL and EMC, is working on these developments to transition advances in HWRF to
FV3-HAFS under hurricane supplemental (1A4 of the supplemental project).
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b. High-resolution physics

Some of the HWRF, observation-based physics such as the surface and boundary layer, and
microphysical parameterization schemes have been found to improve tropical cyclone structure and
intensity predictions, which is critical for meeting the HFIP goals. For instance, the boundary layer and
surface layer parameterization schemes have been proven to improve hurricane size predictions almost by
50% (Gopalakrishnan, et al., 2013 and Tallapragada et al., 2014). The HWRF physics is currently being
transitioned to the HAFS system under 2018 Hurricane Supplemental funding. In addition, HFIP is
seeking opportunities for unification of physics between various UFS applications in consultation with the
UFS Physics Working Group (3A1 and 3A2 of the supplemental project).

c. Data Assimilation

Hurricane data assimilation schemes do not have a counterpart. While global models focus on synoptic
scale observations, and CAM applications rely on local and storm scale data, both inner core as well as
synoptic scale observations are essential for further improving both track and intensity predictions.
Central to producing a good analysis is the need for developments of a scale-spanning data assimilation
scheme. Though great strides have recently been made in HWRF DA, more work remains to be done. In
particular, there are a number of known problems in the current hurricane DA system that will require
varying degrees of effort to resolve. These include: (i) Vortex initialization procedures need to work more
seamlessly with the data assimilation system. The current procedure, while helpful in some ways,
destructively interferes with the data assimilation system when inner-core observations are available. A
possible alternative that needs to be explored is to assimilate synthetic observations to supplement inner-
core observations. (ii) All state variables need to be carried from one cycle to the next, which is not
currently the case in HWRF. Most crucially, HWRF currently does not cycle condensate or vertical
motion, which is known to impact the analysis. (iii) The current self-cycled three-dimensional hybrid
ensemble-variational (3DEnVAR) HWRF DA system improves upon the old DA system, but more
development is needed to improve dynamic balance, particularly for intense hurricanes where inner core
gradients are extremely large. Among necessary improvements are an upgrade to four-dimensional hybrid
ensemble-variational data assimilation (4DEnVAR) from 3DEnVAR and also to cycle DA more
frequently (e.g., every hour instead of every 6 hours). (iv) The current HWRF DA makes suboptimal use
of observations. For example, though all reconnaissance data are now assimilated into HWRF, much of
this data has had no assumed observation error tuning. Though the HWRF system assimilates satellite
radiances, it currently uses bias correction from the global model, which is problematic since HWRF and
the global model does not have the same biases. (v) The inner-core data assimilation capability for HAFS
will be aligned with Joint Effort for Data Assimilation (JEDI) developments. AOML in joint partnership
with EMC is working on these developments under hurricane supplemental effort.

d. 3D Ocean coupling

The ocean model component of HAFS will use HYbrid Coordinate Ocean Model (HY COM) that is based
on 3D free-surface, primitive governing equations. Solutions are sought on Arakawa C-grids at
resolutions of 1/12-degree and 41 hybrid z-sigma in horizontal and vertical, respectively. Initial and
boundary conditions (ICs/BCs) are provided in real-time via subsetting NCODA-based nowcasts and
forecasts from global Real-Time Forecast Ocean System (RTOFS), respectively. Subgrid turbulence
mixing is simulated by KPP mixing. For better simulations of the upper ocean structure, particularly of
freshwater barrier and freshwater lenses, use of model precipitation and river freshwater discharge will be
included in the future. A plan for ocean DA is to employ RTOFS-DA based on 3DVAR approach, which
replaces the subset of global RTOFS nowcasts.

e. Observations

Apart from synoptic-scale observations used for NWP and in Global model data assimilation schemes,
airborne observations are critical for improving TC predictions. In the Atlantic basin, Air Force Reserve
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C-130 and NOAA WP-3D aircraft are used to sample TCs whenever possible to provide critical
observations of the location, strength, and structure of the storm circulation. Sampling of the environment
is typically accomplished by the NOAA G-IV aircraft. These manned aircraft are equipped with a variety
of instruments that sample the wind, temperature, moisture, pressure, precipitation, and ocean surface and
subsurface temperature and salinity, current, and wave fields within and around TCs (e.g., with flight-
level measurements, dropwindsonde, airborne Doppler radar, Stepped Frequency Microwave Radiometer,
lower fuselage radar, and airborne expendable bathythermographs/current profilers). Experimental
airborne observing technologies, such as Light Detection and Ranging (LIDAR), have the ability to
sample the wind field in the absence of precipitation scatterers. Unmanned aerial systems, such as the
Coyote and Global Hawk can sample temperature, moisture, and pressure fields in the planetary boundary
layer of hurricanes, and over vast areas at very high altitudes for extended periods of time, areas that can’t
be reached by manned aircraft because of safety and/or aircraft performance limitations. These
experimental observing technologies could potentially fill gaps in the current observing system, providing
critical measurements needed to more fully capture the structures important to TC structure and intensity
change. Many of the inner core observations provided by AOML have been used for not only improving
DA but also for improving model parameterization schemes. HAFS will take advantage of advancements
in these observing technologies to optimize sampling of the TC inner-core and environment and provide
the needed support for forecast, analysis, model initialization and evaluation, current and future data
impact studies (OSEs and OSSEs), and process studies.

Remote-sensing sea surface temperature (SST), sea surface salinity (SSS) and absolute dynamic height,
temperature and salinity profiles from various observing platforms are routinely used for Ocean DA at
this time. However, there are a couple of invaluable ocean observing programs, such as the US Integrated
Ocean Observing System (IOOS) Program and Global Drifter Program (GDP), which at least provides
synoptic oceanic conditions. Systematic ocean target observations collecting surface and subsurface
temperature and salinity before, during and after a TC are ideal to provide more realistic enthalpy flux
exchange and accurate assessments of TC ocean response at a TC scale. In particular, concurrent and co-
located samples covering both the air and sea (including the air-sea boundary layer) near the TC field are
absolutely crucial. Future SUAS observations (and SST sondes) could be helpful with several existing
(and new/proposed) requirements.

While active developments of the HAFS system enlisted above are ongoing, for the 2019 season, two
preliminary configurations of the HAFS system were run under Stream-2. Some of the preliminary
results, especially related to track predictions of Dorain where the operational models struggled, showed
promise in the next generation hurricane forecast system i.e. HAFS.

8. Important Stream-2 Results

a. HWRF Research Advances: Multiple, Storm-following, Two-way
Interactive Telescoping Nests (Stream-2)

Although the operational HWRF system is improving intensity forecast skill, it is currently configured
with only one set of high-resolution nests (i.e., it is storm-centric). This is not ideal for forecasting storm-
storm interactions, storm-environment interactions, or TC genesis. Further, the limited size of the
outermost operational HWRF domain may limit the improvement of forecast skill beyond five days, a
major goal of next-generation numerical weather prediction efforts. HWRF’s configuration poses many
challenges for producing a large-scale analysis because its outermost domain moves from one forecast to
the next, which is incompatible with current data assimilation software. All of these points may represent
impediments to further advances in hurricane forecast guidance from dynamical models. For this reason, a
Basin-scale HWRF (HWRF-B) was created under HFIP, with some advanced configuration options: 1) a
large, static outermost domain that covers approximately one-fourth of the globe, and 2) multiple sets of
movable, multi-level nests, each following a different storm at a horizontal resolution on par with that in
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the current operational HWRF system. As a result, HWRF-B has the ability to produce simultaneous TC
forecasts at high resolution, and also serves as a prototype for the development of multiple moving, multi-
level nests within the global model. HWRF-B allows for advanced data assimilation evaluations given its
static outermost domain, and has already shown promise in observing system experiments (OSEs) and
observing system simulation experiments (OSSEs). HWRF-B has been a collaborative effort between
AOML and NCEP.
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Figure 10: HWRF-B configured with three high-resolution movable multi-level nests following Hurricane Dorian,
Tropical Storm Gabrielle, and Hurricane Juliette for a forecast initialized at 1800 UTC 03 September 2019.

The experimental HWRF-B model was an HFIP real-time demonstration for the seventh year, in parallel
with operational hurricane models, during the 2019 North Atlantic and eastern North Pacific hurricane
seasons. HWRF-B was run for the first time on NOAA’s Weather and Climate Operational
Supercomputing System (WCOSS), moving it a step closer to operational transition. A multi-storm
coupler was developed and implemented in HWRF-B to exchange information between the atmosphere
and ocean models for multiple storms at high resolution. HWRF-B tracked up to three TCs at a time at
high resolution (~1.5 km) during the 2019 real-time demonstration; offseason experiments are now
tracking up to five TCs and more are possible with expected increases to high performance computer
resources. In 2019, HWRF-B assimilated the exact same satellite, ground-based, and aircraft observations
as the operational system, and, after the season, the identical self-cycled data assimilation software used
for the operational system was transitioned to HWRF-B and expanded to multiple TCs. With high
cyclone activity in both basins, HWRF-B produced forecasts for multiple TCs in > 90% of its
simulations. For example, high-resolution nests in HWRF-B tracked Hurricane Dorian, Tropical Storm
Gabrielle, and Hurricane Juliette for a forecast initialized at 1800 UTC 03 September 2019 (Fig. 10).
HWRF-B was at least 20% better than the operational HWRF for intensity predictions of Hurricane
Dorian at most forecast lead times. HWRF-B outperformed the operational HWRF in 2019, especially
when multiple TCs were active in the North Atlantic and eastern North Pacific basins. Seasonal error
statistics show that the 2019 HWRF-B (HB9I) had more skillful track and intensity forecasts than the
operational HWRF (HWFI) at most (especially longer) lead times (Fig. 11). Further analysis
demonstrated that capturing fine-scale details of as many TCs as possible via multiple moving telescopic
nests is important to predict realistic storm-storm interactions and, thus, to produce accurate forecasts of
maximum intensity, storm structure, and track. In contrast, the operational HWRF is capable of tracking
only one storm at high resolution per forecast and may misrepresent storm-storm interactions critical for
intensity forecasts (e.g., Hurricane Dorian). The HWRF-B moving nests are foundational to the next
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generation HAFS. The advanced and well-evaluated nesting technique is being transitioned to the FV3
Unified Forecast System (FV3-UFS).

(a) Track Skill vs. HWFI (b) Intensity Skill vs. HWFI
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Figure 11: Verification of a) mean track skill scores versus interpolated 2019 operational HWREF forecasts (HWFI;
purple) and b) mean intensity skill scores versus HWFI for interpolated 2019 HWRF-B forecasts (HB9I; brown),
interpolated GFS forecasts (GFSI; blue), interpolated HMON forecasts (HMNI; green), and interpolated CTCX forecasts
(CTCI; gold).

b. HAFS Experimental systems (Stream-2)

As a part of Stream 2, two preliminary versions of the HAFS systems, the global with one static nest at 3
km resolution covering the Atlantic basin (HAFS0.B) and another version of a stand-alone version of a
regional configuration at uniform 3-km resolution (HAFS0.A) was run during the 2019 hurricane season.
This system neither had moving nests nor had the advanced inner core DA packages critical for improved
intensity and structure predictions.

HAFSO0.A configuration uses the stand-alone-regional (SAR) configuration of FV3, with a large static
domain covering the north Atlantic at ~3-km grid spacing (Figure 12) that gets initial conditions from the
GFS analysis, and boundary conditions in one-way feedback from the operational GFS every three hours.
HAFSO0.B configuration is based on the global-nested configuration of FV3GFS (Harris and Lin, 2013),
with a large static nest over the Atlantic at ~3-km grid spacing (similar to Hazelton et al. 2018b) inside of
a global forecast (at ~12-13 km grid spacing). The nest covers the entire Atlantic TC
genesis/development region from off the coast of Africa, through the Atlantic, Caribbean, and Gulf of
Mexico (Figure 13). This configuration of HAFS allows for two-way feedback between the global and
static nested domains. This version was called HAFS-globalnest (or HAFSB). For 2019, both versions of
HAFS were “cold starts”, meaning that they were initialized directly from the 13-km global GFS analysis.
The development of a data assimilation system for HAFS, including assimilation of radar and other
relevant TC data, is an ongoing project. Both versions of HAFS use 64 vertical levels on the sigma-
pressure hybrid coordinate with the lowest model level at about 25 m above the surface and the top level
at 0.2 hPa. Physics parameterizations are similar to those in the operational FV3GFS, with modifications
to the surface drag (Bender et al. 2007) and PBL physics (Wang et al. 2018) for more realistic results in
TC environments. The horizontal advection scheme used in HAFS-SAR and the nest domain of HAFS-
globalnest is more diffusive than operational FV3GFS to keep the high resolution forecast stable. HAFS-
SAR was run for 126 hours, and HAFS-globalnest for 168 hours. This version of HAFS did not include
an ocean coupling component, a capability currently in development.
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Figure 12: The Atlantic static domain for the stand-alone regional version of HAFS (HAFS-SAR).
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Figure 13: a) The 6 cubed-sphere tiles of the HAFS-globalnest global domain, with the Atlantic nest outlined in red. b) A
zoomed-in view of the tile centered on the Atlantic, with the Atlantic nest outlined in red.
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Figure 14a shows the track forecast verification from HAFS and other models for the 2019 Atlantic
Hurricane season. Both versions of HAFS performed well, with lower errors at all hours out to Day 5 than
the GFS, HWRF, and HMON. There is about a 20% improvement over HWRF in terms of track skill
throughout 5 days forecasts from both HAFS versions. Most of the track forecast improvement over
GFS/HWRF/HMON is from the cross-track component. This is a promising result that demonstrates the
potential for HAFS to further improve TC track prediction.

Figure 14b shows the intensity forecast verification from HAFS and other models for the 2019 Atlantic
Hurricane Season. The results are a little more mixed than those for track forecast. While the intensity
forecast errors were lower than the operational GFS at all forecast hours, demonstrating the value of the
high-resolution nest for TC prediction, the errors were higher than the current operational hurricane
models (HWRF and HMON) at early lead times. Both HAFS versions have comparable or smaller
intensity error than HWRF/HMON for weak storms (initial intensity less than 50 kts) while generally
underpredict the intensity for strong storms (initial intensity more than 50 kts). This points to a need for
ongoing development of HAFS, including improvements to horizontal and vertical resolution, model
physics, and data assimilation to improve intensity forecasts, especially during challenging cases like
rapid intensification. All of these topics (and others) are the focus of ongoing research and development
efforts.
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Figure 14: (a) Track forecast verification (mean error in n mi) for all 2019 cases from HAFS-SAR (light blue), HAFS-
globalnest (red), HWRF (purple), HMON (green), and GFS (dark blue); (b) Intensity forecast verification (mean absolute
error in kt) for all 2019 cases from HAFS-SAR (light blue), HAFS-globalnest (red), HWRF (purple), HMON (green), and
GFS (dark blue).

One of the biggest successes for HAFS was the forecasts for Hurricane Dorian. Both versions of HAFS
were consistently showing Dorian turning to the East of Florida, while the GFS and other operational
models predicted a Florida landfall (Fig. 15).
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HAFA Lifetime Track Forecasts
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9. New Products, Tools, and Services at NHC
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Figure 16: Examples of PPAYV products and results from 2019: a) Refined version of the “Be Ready By” graphic; b)
Intensity skill of HMON forecasts with different interpolation schemes. The higher lines represent more skill (better
forecasts); ¢) HFIP NHC diagnostic display example from Hurricane Dorian showing track and intensity information; d)
Boundary layer entropy in HWREF forecasts with different vertical eddy diffusivity. Entropy is much smaller in the high
eddy diffusivity forecast (left) than the low diffusivity forecast (right). The low diffusivity forecast more accurately
captured the rapid intensification of Hurricane Earl.

a. Operational and Real-Time Applications

Great strides were made in 2019 toward the improvement of operational tools and real-time diagnostic
applications for hurricane forecasting. Improvements were made to the output graphics and operational
stability of the HFIP Corrected Consensus Approach (HCCA). Automatic training with each forecast
cycle was also built in, and new models were added to the track and intensity consensus. The operational
track and intensity consensus aids, TVCN and IVCN, were also optimized for 2019, as was the
interpolator used to create operational guidance from late-arriving model output at the NHC (Fig. 16b).
Cluster-guidance based on ensemble output was developed for 34- and 50-kt wind radii forecasts. A
rapid-intensification model, DTOPS (Deterministic to Probabilistic Statistical RI Index), ran operationally
for the first time in 2019 and showed promising results. Another new statistical model, the Neural
Network Intensity Combination (NNIC) was tested in 2019 and shows promise at further improving
consensus-based guidance.

HFIP also supported improvements to operational infrastructure and real-time prototype products. This
included updates to the ATCF used by NHC forecasters to compose operational advisory packages. A
wind speed probability model-based gridded forecast (WTCM) was tested in real-time in 2019 for
evaluation by WFOs and NHC/TAFB. The WTCM converts the NHC text forecast to a gridded format
and includes the variation in surface roughness due to land surface type and the feedback in 2019 led to
several improvements to the parametric wind model. In AWIPS, a hazard recommender tool was tested
based on the wind speed probability model. This tool is expected to help forecasters with future warning
decision making and ensure consistent products and messaging across multiple local forecast offices
during hurricane landfall events. Enhanced verification of watches and warnings and the wind speed
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probabilities were developed to support that effort. Finally, a simplified version of the time of arrival
product, the “Be Ready By” graphic was refined (Fig. 16a) and available for briefings and improved
decision support services at the NHC.

b. Display and Diagnostic Activities

The HFIP community continued to make progress toward improving model diagnostics and visualization
in 2019. At the NHC, work was done to create an extended HURDAT-2 database. New capabilities and
optimizations were also built into the NHC verification code, including a tie-in to environmental
parameter diagnostic files from the SHIPS model. NCAR developed new diagnostic products to help
visualize ensemble-based rapid intensification forecasts using parameters such as intensity and pressure.
This concept will be applied to other diagnostics such as wind shear or sea surface temperature. National
Center for Atmospheric Research (NCAR) also continued to support web-based tools including the NHC
Display and Diagnostic system and provided a number of enhancements to that visualization tool (Fig.
16¢). The HFIP Products website and ESRL TC Tracks pages are other web diagnostic tools that were
supported and improved in 2019. Hurricane Research Division (HRD) used diagnostics to guide HAFS
development by placing model output in a framework that could be directly compared to radar
observations. HRD also developed ways to visualize the impact of boundary layer parameterizations on
hurricane structure and intensification in the HWRF model (Fig. 16d).

c. Experimental Projects

In addition to the progress outlined above, three projects supported by the Hurricane Supplemental began
work in 2019. Recent aircraft reconnaissance observations in hurricanes have shown an apparent high
bias from the Stepped Frequency Microwave Radiometer (SFMR) instrument. One project has begun to
re-examine the calibration based on the inclusion of more recent data and re-examine data co-location and
adjustment algorithms. Another project is looking at new ways to examine hurricane forecasts through the
use of 3-D visualization software to improve real-time diagnostics and facilitate post-storm analysis. The
third project is focused on extending the NHC’s existing forecast guidance to 7 days and modernizing the
code to help with long-term maintenance and development. This work is critical as the NHC examines the
utility of extending its forecasts to 7 days.

10. Community Involvement

Research to Operations (R20) was one of the initial goals of the WRF program and is supported by HFIP
in developing a repository for a community-based hurricane modeling system, which ensures the same
code base can be used for research and in operations. During 2009-2016, both the EMC and the DTC
worked to update the operational version of HWRF from version 2.0 to the community version of HWREF,
version 3.9a. The 3.9a version made the operational model completely compatible with codes in
community repositories, allowing researchers to access the operational codes. Hence, the improvements
in HWREF, developed by the research community, were easily transferable into operations. DTC has
played a significant role to help the HWRF community by conducting HWRF training sessions twice per
year from 2010-2018, two of which were international. In addition, twelve Community Workshops on
topics ranging from physics, observations, ensemble product development, satellite DA, to social science
were conducted. In July 2018, the code version of the HWRF system v4.0a was available for the HWRF
community. Since then DTC has continued to provide user support. Apart from US, there are about
thousand HWRF model users in about 198 countries®. User support was expanded with the Stream-2
efforts, the significant one being the Basin-Scale HWREF. This research system can support any number of
high-resolution movable nests centered on TCs in either the Atlantic or eastern North Pacific basin.
Working with HRD, the DTC also supported the transition of this research version to the latest

3 https://www.emc.ncep.noaa.gov/gc_wmb/vxt/HWRF
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community repository, enabling users to access all advancements in the HWRF system including the end-
to-end Basin-Scale configuration (excluding ocean coupling and data assimilation). A similar testbed
activity is recommended for transitioning the proposed HAFS.

HFIP Ensemble Diagnostic Products: NCAR focused on a new initiative to develop diagnostic products
that will help forecasters understand why particular models are forecasting rapid intensification (RI) while
others do not. The initial efforts have resulted in the development of several new prototype visualizations,
which show forecasted trajectories of the various forecast aids, with each forecast aid’s trajectory colored
according to the value of some diagnostic parameter. Possible diagnostic parameters could include
environmental conditions (e.g., environmental vertical wind shear, maximum potential intensity, sea
surface temperature, etc.) or inner core storm structural characteristics (precipitation symmetry, radius of
maximum winds, inertial stability, etc.). The prototype visualizations use parameters available from the
ATCEF a-decks, such as intensity, minimum sea level pressure, and forecast lead-time. Figure 17a shows
an example visualization for Hurricane Michael, where the diagnostic parameter is the forecast aid’s
predicted intensity (VMAX). Figure 17b shows a similar diagnostic prototype visualization, but where the
diagnostic is forecast lead-time. The trajectories of each forecast aid are colored by its forecast maximum
intensity, using color bins corresponding to the categories of the Saffir-Simpson Hurricane Scale.
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Figure 17: (a) Intensity diagnostic plot for the late-cycle forecast track guidance for Hurricane Michael, initialized at 18
UTC on 08 October 2018. (b) Lead time diagnostic plot for the late-cycle forecast track guidance for Hurricane Michael,
initialized at 18 UTC on 08 October 2018.

NCAR NHC Display System: The new hurricane display and diagnostic capabilities allow forecasters and
research scientists to more deeply examine the performance of operational and experimental models. The
system is built upon modern and flexible technology, including OpenLayers Mapping tools and an
efficient MySQL database. New technologies developed this past year include an advanced tool for
editing the hurricane fix-position database (F-deck) and the best-track database (B-deck). The F-deck
editing tool allows users to add or edit the estimated location of hurricanes using fixed-position
information from aircraft analysis, radar, satellite, microwave, and scatterometer observations. A wind
radii tool has been added to view wind radii graphics by 34kt, 50kt, 64kt wind thresholds. The display
system also calculates and displays derived fields using GFS model output including wind shear,
moisture, and precipitable water. An example of the display system capabilities is shown in Figure 16c.
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11. NOAA Federally Funded Opportunity (FFO)

The following Table provides a list of projects supported by HFIP during 2018-2020.
Table 2 HFIP Supported Projects from 2018-2020.

PI Institution Project Title

Advanced DA Techniques for Satellite-
Derived Atmospheric Motion Vectors from
GOES 16/17 in the HWRF

University of Wisconsin
(UWI)

Colorado State University ~ Using Dynamically-Based Probabilistic
(CSU) Forecast Systems to Improve the NHC
Wind Speed Products

Massachusetts Institute of New Frameworks for Predicting Extreme
Technology (MIT) Rapid Intensification

Rapid Intensification Changes: Improving

Florida In ional
S Sub-Grid Scale Model Parameterization and

versity (F
University (FIU) Microphysical-Dynamical Interaction
Evaluating Initial Condition Perturbation
SUNY Albany Methods in the HWRF Ensemble Prediction

System

Colorado State University Enabling Cloud Condensate Cycling for All-

(CSU) Sky Radiance Assimilation in HWRF

12. Socio-economic Aspects of HFIP

NHC’s tropical cyclone forecast track graphic, commonly referred to as the cone of uncertainty (referred
to as the cone), may be both the most viewed and most misinterpreted product within the tropical cyclone
product suite. Designed to convey the forecast uncertainty of the center of a tropical cyclone’s track, the
cone’s visual features have come under scrutiny with many studies and reports pointing to
misunderstanding. The NOAA Hurricane Charley Service Assessment (2006) documented how residents
and emergency managers focused too much on the original skinny black line, discounting the geographic
areas in the surrounding cone as not at risk to the hurricane’s associated hazards. The NHC later set the
default version of the graphic to exclude the skinny black line allowing users to toggle that feature on/off
if they choose. However, the issue of misinterpreting the line, or one’s mental interpolation of a line
between forecast points, persists as noted in the more recent NOAA Hurricane Matthew Service
Assessment (2017). Beyond the skinny black line, many users also anchor to whether they are “inside” or
“outside” of the cone to make decisions. Since the associated hazards of a tropical cyclone usually extend
well beyond the bounds of the cone, the use of the cone in this way is disconcerting and potentially
dangerous.
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Figure 18: The 5-day cone of uncertainty with black track line toggled off.

Misinterpretation may exist because the cone of uncertainty conveys a lot of complex hurricane
information. The cone shape represents an outline of the 67th percentile of NHC’s average track effort
over the last 5 years at each forecast time. This means that the size of the cone is not dynamic on a storm-
by-storm basis, or even a forecast-by-forecast basis, and reflects the amount of error (forecast vs. actual
path) averaged for all events over the previous five years.

Though the cone may have complexities, conveying a tropical cyclone’s uncertainty is very important.
Scientific advancements continue to increase forecast accuracy, but uncertainties remain due to
observational and modeling limitations of the steering currents surrounding a tropical cyclone. These
limitations can lead to longer-term deviations of the storm’s center from the official forecast track, or
even normal shorter-term wobbles around the official forecast track. In addition, the hazards associated
with tropical cyclones, including wind, storm surge, heavy rainfall, and tornadoes, can extend well away
from the storm’s center. These realities mean that people in both the direct and indirect path of the center
of a tropical cyclone may need to prepare for the associated hazards. An implicit function of the cone is to
give people a “heads up” that they may need to prepare for a tropical cyclone based on their proximity to
the shaded area, but the cone does not convey the specifics of each hazard associated with the tropical
cyclone. Importantly, this “heads up” function is equally vital for people on land as compared to people
over water, such as mariners.

Despite the cone’s complexity, the cone remains one of the most public-facing NHC products. Broadcast
meteorologists and the private weather industry often make their own version of the cone of uncertainty,
showing it on television as well as posting it online. The appeal of the cone is that it helps answer the
question, “Where is the hurricane going?,” providing a succinct visual summary of the storm’s forecast
track and intensity. In some regards, it is the “go-to” product for many users.

Because of these long-term misunderstandings and the importance of conveying risk and uncertainty,
NWS commissioned a study in 2018 to focus on the cone of uncertainty and the related information it
conveys. The goal of this research is to synthesize what prior research and NWS assessments reveal about
the cone and its interpretation and use. NOAA would also like to understand how embedded the cone of
uncertainty is in stakeholder decision-making, and what those decisions and implications look like. The
study will include a literature review of the general public, broadcast meteorologists and emergency
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managers interpretation and understanding of the cone, including key decisions and decision-times of
emergency managers based on the information provided by the cone. The study will also focus on the use
of the cone by the wider, less-studied user base beyond emergency managers, including but not limited to
utility companies, the tourism sector, transportation (including airlines, rail), marine (including fishing,
cargo, ports, etc.), finance and insurance companies, military, etc. To the extent possible, the use study
should include both domestic and as appropriate international users.

13. Intensity Predictions: HFIP State-of-the-art and HAFS
developments

In 2009, NOAA established the 10-year HFIP to accelerate the improvement of forecasts and warnings of
tropical cyclones and to enhance mitigation and preparedness by increasing confidence in those forecasts.
Regional models with moving nests were created especially to address the problem of intensity changes in
TCs, which are not possible in global models because the horizontal resolution in global models are
incapable of capturing the hurricane eye wall and the inner-core structure of the hurricanes critical for
intensity forecasting (section 4).

Sustained HFIP investments in research and development (R&D) and HPC led to the creation and
transitions of the high-resolution HWREF system from research to operations (R20). This system is now
paving the way, around the globe, and removing the initial roadblocks associated with predicting intensity
changes with the dynamical prediction, which was nearly non-existent until 2009 (Fig. 2b). HWRF has
improved by about 40-60% since 2011 over the Atlantic basin (Fig. 3). Since 2014, HWRF has run
operationally in all global basins and is used by forecasters for reliable intensity guidance worldwide.
Significant improvements to the HWRF system are attributed to a number of major changes since 2012,
including a new, higher- resolution nest capable of better resolving eyewall convection and scale
interactions, inner core DA technique, improved planetary boundary layer and turbulence physics, an
improved nest motion algorithm, and, above all, yearly upgrades, systematic testing and evaluation (T&E)
that are based not only on single simulations and idealized case studies but on several seasons of testing.

A more advanced version of HWREF, called the Basin-Scale HWREF, an unparalleled capacity for
addressing NOAA'’s next generation forecasting needs within the unified forecasting system was created
under HFIP (Fig.10). The Ocean-Coupled Basin-Scale HWRF, which was run in Stream 2 for the past 3-4
seasons, is starting to demonstrate how basin wide domain with multiple-moving nests tracking several
storms simultaneously in AL and EP basins could improve storm-storm and land-storm interactions
without using uniform high-resolution domain, hence providing an operational solution for the TC
forecasting (Fig.10). Transitions of this multiple moving nested HWRF to next generation global and
regional HAFS system within the unified forecast system is underway and is expected to provide another
step in improvements to the hurricane prediction capacity in NOAA.

Other noteworthy developments under HFIP were the Ensemble HWRF system, HyCOM-Wavewatch
coupled HWRF system and fully cycled Basin-Scale HWRF (Gopalakrishnan, 2018 HFIP report). The
systems are actively used, respectively, for research, especially related to understanding RI predictions
(e.g., Leighton et. al., 2018) and for improving satellite data assimilation (Poterjoy et. al., 2019). The
HCCA model has been another major achievement for the HFIP program (Simon et. al., 2018).
Leveraging the success of HWRF and the capacity that was built under HFIP, a second high resolution
hurricane model for intensity predictions, HMON, was developed by scientists at EMC and AOML under
the Sandy Supplemental effort. The HMON replaced the legacy GFDL hurricane model and is now an
integral part of NHC’s forecast consensus.

These developments and T&E would not be possible without the support of the HFIP JET-HPC in
Boulder, which was dedicated for Hurricane R20 early in the program. HFIP has also built a capacity of
model users, developers and hurricane scientists both within NOAA and academia to tackle the next
generation hurricane forecast improvements. It should be emphasized that nearly all major HWRF



34

developments and R20 efforts, including the first high-resolution version of HWRF, originated as Stream
2 activity, and supported in a real-time demonstration mode during the hurricane season and then
transitioned to operations.

Beside these, there have been five Federally Funded Opportunities over the last 10 years for HFIP,
awarding 40 grants to University Pls, totaling $10.5M. All these HFIP efforts have led to hundreds of
publications related to HWRF within that period*.

HFIP’s approach is designed to accelerate the implementation of promising technologies and techniques
from the research community into operations. That approach has resulted in a 20% reduction in both
storm track and intensity errors in the numerical guidance. Yet, as shown in Figure 19, although HWRF
has improved 40-60% in intensity predictions, those improvements have only met 50% of the targeted
HFIP intensity goals (i.e. we are only half way through!). Part of the reason may be associated with the
lack of progress with dynamical guidance until 2012. In fact, until 2012 intensity predictions lagged even
the baseline (Figure 19) primarily set on statistical-dynamical models (SHIPS and LGEM). Also it is not
clear at this time what are the limiting factors of intensity predictability. In fact, the same kind of analysis
as shown in Figure 19 was carried out by calculating the median errors. The errors shown in Figure 19
were further reduced significantly indicating that the outlier events are the ones that drive the larger
errors. Some sustained HFIP research is recommended in this area especially with the next generation
hurricane prediction system.

Intensity Skill vs. OCD5
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HFIP goals.

4 http://www.hfip.org/documents
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Improving RI (increase >30 kt intensity change in 24 hours) forecasts is one of the highest priorities for
HFIP and was recognized as the most challenging aspect of TC research. The lack of improvement in the
RI forecast skill is rooted in our lack of understanding of when and how RI occurs in different
environmental conditions and the historic inability of dynamical models to accurately predict not only
convection in the hurricane core, but also large scale environmental factors such as shear and moisture
that produce an RI event (Chen and Gopalakrishnan, 2015; Leighton et. al., 2018). While HWREF is able
to capture some of the complex cases of RI in a highly sheared environment (e.g., Hurricane Michael,
2019), storm to storm (e.g., Hurricane Patricia, 2015, Dorain, 2019) and cycle to cycle inconsistency (e.g.,
Hurricanes Harvey, 2018) makes the RI prediction still a very elusive problem. As shown in section 6¢
(Fig. 9), even multi-model consensus consisting of statistical models, where HWREF is the main
dynamical model, have shown season to season variability. In fact, the 2019 season shows negative skill
for most of the forecast time (Fig. 9). Some sustained HFIP research with HAFS is recommended in this
area.

Supported by the NOAA Hurricane Supplemental projects, accelerated developments of HAFS are
ongoing. Those developments include high-resolution, telescoping two-way interactive moving nests,
model physics to support high-resolution prediction, hurricane inner core data assimilation techniques,
regional ensembles and products to support probabilistic forecasts. All developments are being seamlessly
merged with the UFS developments. Under the Weather Research and Forecasting Innovation Act
including Section 104, HFIP will continue addressing the goals of further reducing track and intensity
forecast errors by 20% within 5 years and 50% within 10 years and to extend forecasts out to 7 days,
particularly with focus on rapid intensification guidance. In addition, the updated plan extends HFIP’s
purview to improving guidance on predicting storm structure and all hurricane hazards (surge, rain,
associated severe weather, gusts as well as sustained winds) at actionable lead times for emergency
managers (e.g., 72 hours). While significant progress were made with, especially track and intensity
predictions using the HWRF system, further improvements are necessary. The HAFS system is expected
to address those new HFIP goals.

14. Future direction of the HFIP

In response to Section 104 of the Weather Research Forecasting Innovation Act, the new HFIP Strategic
Plan detailing the specific research, development, and technology transfer activities necessary to sustain
HFIP’s next generation of science and R20 challenges has been approved.

To improve TC forecasting with the goal of developing and extending accurate TC forecasts and
warnings in order to reduce loss of life, injury, and damage to the economy, the next generation of HFIP
will focus on:

1. Improving the prediction of rapid intensification and track of TCs;
2. Improving the forecast and communication of surges from TCs; and
3. Incorporating risk communication research to create more effective watch and warning products.

In order to address the three primary focus areas outlined above, HFIP has developed a set of specific
goals and metrics to improve the accuracy and reliability of TC forecasts and warnings and increase the
confidence in those forecasts to enhance mitigation and preparedness decisions by emergency
management officials at all levels of government and by individuals.

Improved model guidance for TC formation, track, intensity and size will be essential to address all three
areas. Basic TC forecast parameters will be improved, including the formation time and location, position,
maximum wind (i.e., intensity), and storm size. Estimates of the uncertainty of those parameters will also
be enhanced, enabling better risk communication to end users through accurate probabilistic information
(i.e., information that considers the likelihood, or probability, that an event will occur). Rapid
intensification remains an especially important and challenging forecast problem. Specific goals and
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metrics are defined for the prediction of the basic TC forecast parameters, new extended range forecasts,
rapid intensification, and TC formation.

The HFIP will build upon the original goals of the project through the following specific goals and
metrics:

1. Reduce forecast guidance errors, including during rapid intensification, by 50 percent from 2017;

2. Produce 7-day forecast guidance as good as the 2017 5-day forecast guidance;

3. Improve guidance on pre-formation disturbances, including genesis timing, and track and
intensity forecasts, by 20 percent from 2017; and

4. Improve hazard guidance and risk communication, based on social and behavioral science, to
modernize the TC product suite (products, information, and services) for actionable lead-times for
storm surge and all other threats.

NOAA recognizes the broad scope of the scientific challenges associated with understanding and
predicting hurricanes. Addressing these challenges and improving the forecasts of TC track and intensity
will involve significant community interaction and access to the necessary expertise. The success of the
next phase of HFIP in reaching the goals requires sufficient funding to support the activities outlined here.
NOAA made significant progress toward achieving HFIP goals in the first 5-6 years of the program.
Starting in FY 2015, however, NOAA dedicated fewer resources to HFIP due to competing budget
priorities across the agency. This slowed the rate of progress towards HFIP goals (e.g. Tropical Cyclone
Intensity and RI research) by restricting the capacity to test and evaluate new research and delaying
transition of potential new analysis and forecast applications into operations. The lower funding levels
also hindered engagement with the academic community that dramatically slowed model improvements.

With the passage of the Weather Act by Congress in 2017, NOAA is now dedicated to reinvigorating
HFIP to move towards meeting the requirements of the Act. Resource requirements are still being
considered within the agency and will be reflected in NOAA’s future year budget requests. The FY 18
Appropriations remained constant with the 2015 funding levels and does not address how to support the
changes in the HFIP priorities directed by the Section 104 of the Weather Act, which requires addressing
new strategies, such as risk communication and improving probabilistic guidance. The original HFIP
focused on model developments, in particular HWRF and building a capacity to accelerate the model
development (HPC upgrades, DTC support for the model developers, EMC & NHC support, and
accelerate R20). The Bipartisan Budget Act of 2018 (P.L.115-123) appropriated funds to improve
weather forecasting, hurricane intensity forecasting and flood forecasting and mitigation capabilities
which has been recently allocated to support 2019-2022 HFIP activities. This provides a firm start for the
development of HAFS and the next phase of HFIP, but the challenge remains to ensure sufficient funding
is dedicated to reach the HFIP goals.
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Appendix A: List of Acronyms

AEMI
AOML
AVNI
AWIPS
CCPP
CLIPER
CMC
CMCI
COAMPS
CONUS
CPHC
DA

DTC
DTOPS
ECMWF
EDMF

EMC

EGRI
EM
EMXI
EnKF
EFS
ESRL
FAR
FSSE
FV3
GDP
GDAS
GEFS
GFDL
GFDI
GFS

GEFS with 6 hour interpolation

Atlantic Oceanographic and Meteorology Laboratory

GFS with 6 hour interpolation

Advanced Weather Interactive Processing System

Common Community Physics Package

Climate and Persistence model

Canadian Meteorological Centre model

CMC with 6 hour interpolation.

Coupled Ocean/Atmosphere Mesoscale Prediction System-Tropical Cyclone
Contiguous United States

Central Pacific Hurricane Center

Data Assimilation

Developmental Testbed Center

Deterministic to Probabilistic Statistical RI Index

European Centre for Medium-range Weather Forecasts model

Eddy Diffusivity Mass Flux
Environmental Modeling Center

UKMO model, subjective tracker, with 6 hour interpolation
Equally-weighted Ensemble Mean for models used in MMSE
ECMWF with 6 hour interpolation.

Ensemble Kalman Filter

Experimental Forecast System

Earth System Research Laboratory

False Alarm Rate

Florida State University Super-Ensemble

Finite Volume Cubed-Sphere

Program and Global Drifter Program

Global Data Assimilation System

Global Ensemble Forecast System

Geophysical Fluid Dynamics Laboratory

GFDL with 6 hour interpolation

Global Forecast System



GFSI
GHMI
GIvV
GSI
HAFS
HCCA
HDOBS
HFIP
HMON
HNMMB
HPC
HRD
HWHI
HWMI
HWRF
HWFI
HYCOM
I00S
JEDI
JTWC
LGEM
MAE
MMSE
NAM
NAVGEM
NWS
NCEP
NCO
NCAR
NEMS
NGGPS
NGPI
NGXI
NHC
NMM
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Early GFS with 6 hour interpolation

GFDL adjusted using a variable intensity offset with 6 hour interpolation
NOAA Gulf IV

Grid-point Statistical Interpolation

Hurricane Analysis Forecast System

HFIP Corrected Consensus Approach

High Density Observations

Hurricane Forecast Improvement Program

Hurricanes in a Multi-scale Ocean coupled Non-hydrostatic model
Hurricane Non-hydrostatic Multi-scale Model on B-grid
High Performance Computing

Hurricane Research Division

Basin-scale HWRF with 6 hour interpolation

HWRF Ensemble Mean Forecast Interpolated Ahead 6 hour
Hurricane Weather and Research Forecasting

HWREF with 6 hour interpolation

HYbrid Coordinate Ocean Model

Integrated Ocean Observing System

Joint Effort for Data Assimilation

Joint Typhoon Warning Center

Logistics Growth Equation Model

Mean Absolute Error

FSU Multi-Model Ensemble

North American Mesoscale Model

Center Navy Global Environmental Model

National Weather Service

National Centers for Environmental Prediction

NCEP Central Operations

National Center for Atmospheric Research

NOAA Environmental Modeling System

Next Generation Global Prediction System

NOGAPS with 6 hour interpolation

NOGAPS with 6 hour interpolation

National Hurricane Center

Non-hydrostatic Mesoscale Model



NMMB
NMME
NOGAPS
NNIC
OAR
OFCL
OSEs
OSSE
POD
POM

RI

RW
SAR
SFMR
SIP
SHIFOR
SHIPS
SPICE
SPIN-UP
SPIN-DOWN
SREF
SST

SSS
TAB

TC
TVCA

TVCE

TVCI

TVCN
UFS

UKMI
UW4I
UWNI

NMM on the B-grid

Non-Hydrostatic Mesoscale Model on an E-grid

Navy Operational Global Atmospheric Prediction System
Neural Network Intensity Combination

Oceanic and Atmospheric Research

Official National Hurricane Center Forecast

Observing system experiments

Observing system simulation experiments

Probability of Detection

Princeton Ocean Model

Rapid Intensification

Rapid weakening

Stand Alone Regional

Stepped-Frequency Microwave Radiometer

Strategic Implementation Plan

Statistical Hurricane Intensity Forecast

Statistical Hurricane Intensity Prediction System

Statistical Prediction of Intensity from a Consensus Ensemble
Slang terminology for vortex acceleration and/or initialization
Slang terminology for vortex deceleration and/or termination
Short Range Ensemble Forecast

Sea surface temperature

Sea surface salinity

Trajectory And Beta (TAB) model for trajectory track using GFS input

Tropical Cyclone
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Track Variable Consensus of at least two of AVNI, EGRI, EMXI, NGPI, GHMI,

HWFI forecasts

Variable Consensus of AVNI, EGRI, EMXI, NGPI, GHMI, GFNI, HWFI Model

Track Forecasts

Variable Consensus of AVNI, EGRI, EMXI, NGPI, GHMI, GFNI, HWFI Model

Track Forecasts (6 hour interpolation)
Track Variable Consensus

Unified Forecast System

United Kingdom Meteorological Office model with 6 hour interpolation
University of Wisconsin’s Non-hydrostatic Modeling System (4 km)

UW-NMS with 6 hour interpolation (UWNI)



UW-NMS
WMO
WRF
WFO

University of Wisconsin Non-hydrostatic Modeling System
World Meteorological Organization

Weather Research & Forecasting

Weather Forecast Office
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